

Please write clearly in	olock capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

INTERNATIONAL A-LEVEL PHYSICS

Unit 4 Energy and Energy resources

Wednesday 23 January 2019 07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

01.1	Estimate the work done on the gas during the compression from V_1 to V_2 .	[3 marks]	Do not write outside the box
0 1.2	work done = The density of the gas is 0.179 kg m^{-3} when the volume is V_1 . Calculate the number of moles of gas present. mass of 1 mol of the gas = $4.00 \times 10^{-3} \text{ kg}$	J [2 marks]	
	number of moles = Question 1 continues on the next page	mol	

0 1.3	Calculate the increase in temperature of the gas as a result of it being compressed	Do not write outside the box
	from V_1 to V_2 .	
0 1.4	Explain in terms of the movement of particles why the pressure of the gas increases when it is compressed from V_1 to V_2 .	
	[4 marks]	
		12

02	A plasma containing nuclei of two isotopes of hydrogen, ${}_{1}^{2}H$ and ${}_{1}^{3}H$, is considered to be a possible fuel for fusion reactors in the future. The plasma must be heated to a high temperature to provide the nuclei with the minimum kinetic energy to enable the fusion reaction to occur.	
02.1	Explain why the nuclei in the plasma require a minimum kinetic energy for this fusion reaction to occur	
	[3 marks]	
		-
		-
0 2. 2	The radius of a ${}_{1}^{2}$ H nucleus is 1.51×10^{-13} m.	
	Show that the distance between the centre of a ${}_{1}^{2}$ H nucleus and the centre of a ${}_{1}^{3}$ H nucleus is about 3.2 × 10 ⁻¹⁵ m when they are just in contact	
	[3 marks]	
	Question 2 continues on the next page	

IB/M/Jan19/PH04

Turn over ►

Do not write outside the box

02.3	Assume that the ${}_1^2 H$ and ${}_1^3 H$ nuclei fuse when they are just in contact.	outside the box
	Calculate the minimum total kinetic energy that would allow a ${}_{1}^{2}$ H nucleus and	
	[3 marks]	
	minimum total kinetic energy = \J	

02. **4** The equation for this fusion reaction is

 2_1H + ${}^3_1H \rightarrow {}^4_2He$ + 1_0n + energy

7

Table 1 shows the mass of each particle involved.

Table 1

Particle	Mass / u
1_0 n	1.008665
${}^{2}_{1}H$	2.013553
${}_{1}^{3}H$	3.016049
⁴ ₂ He	4.002603

[3 marks]

J

Do not write outside the box

02.5	Plasmas are contained using magnetic fields.	Do not write outside the box
	Explain how magnetic containment can be made to be more energy-efficient. [2 marks]	
		14

		Do
0 3	A stationary uranium-235 nucleus $\binom{235}{92}$ U decays to a thorium-231 nucleus $\binom{231}{90}$ Th by	ou
	emitting an alpha particle $\begin{pmatrix} 4\\ 2 \end{pmatrix}$.	
	98% of the total energy released in the decay is transferred to the emitted alpha particle as kinetic energy.	
0 3.1	Explain, in terms of the masses of the nuclei, why the total binding energy of the nuclei must increase as a result of this decay.	
	[3 marks]	
	·	

[4 marks]

0 3. **2 Table 2** shows the binding energy per nucleon of nuclei involved in the decay.

Table	2
-------	---

Nucleus	Binding energy per nucleon / pJ
²³⁵ ₉₂ U	1.215
²³¹ ₉₀ Th	1.219
⁴ ₂ He	1.132

Calculate the speed of the alpha particle just after it is emitted.

mass of alpha particle = $6.648 \times 10^{-27} \ kg$

Turn over ►

IB/M/Jan19/PH04

04.3	Show that the angular velocity of the roundabout changes from 2.9 rad s ^{-1} to approximately 2.4 rad s ^{-1} when the child steps onto the roundabout platform. [2 marks]	Do not write outside the box
	The consults is 2.4 m^{-1} do so one has such as fithe constant friction of the constant	
0 4.4	The angular velocity of 2.4 rad s ⁻¹ decreases because of the constant frictional torque. The child remains on the roundabout until the angular velocity has decreased to 0.5 rad s^{-1} .	
	Calculate the number of rotations of the roundabout as it slows. [4 marks]	
	number of rotations =	

Turn over ►

6

box

For each question select the best response.

Only one answer per question is allowed.

 \bullet

For each answer completely fill in the circle alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS	∞	۲	æ	$\langle \! \! \langle \! \! \rangle \! \rangle$

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer	previously crossed out,	ring the answer you ne	ow wish to select
as shown.			

You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.

0 6 Which row will always result in an increase in the internal energy of a system?

[1 mark]

Do not write outside the

box

	Energy input to the system by heating	Work done on the system	
Α	Negative	Positive	0
в	Positive	Negative	0
С	Negative	Negative	0
D	Positive	Positive	0

Section B

0 7	Whi	ich is i	not an assumption made whe	n deriving the equation $pV = -$	$\frac{1}{3} Nm(c_{\rm rms})^2$?	Do not writ outside the box
					[1 mark]	
	A N c	/lolecu contair	ules have negligible volume co ner.	ompared with the volume of th	ne 🗢	
	B 1	he fo	rces between molecules can b	be ignored.	0	
	ר C ל	The du	iration of collisions is very sma	all compared with the time	0	
	DN	Nolecu	lles undergo inelastic collisior	ns with the walls of the contain	ner. \bigcirc	
08	A fix Whi ene	ked m ich rov rgies	ass of a substance changes fi v indicates what happens to th of the molecules of the substa	rom a liquid to a gas at a cons he sums of the kinetic energie ance?	stant temperature. es and potential [1 mark]	
			Sum of kinetic	Sum of potential		
			energies	energies		
		Α	Remains constant	Increases	0	
		в	Remains constant	Remains constant	0	
		с	Increases	Increases	0	
		D	Increases	Decreases	0	

	$\Lambda = 5 \text{ tr} W$ bester in an electric of	$r_{\rm course}$ has to writer from 15 °C to 50 °C. Thermal and	Do not v outside
	transfer to the surroundings is no	egligible.	ergy sox
	What volume of water can be he these conditions?	eated by the shower in 1.0 minute when operating un	der
	specific heat capacity of water = density of water = 1000 kg m^{-3}	$4.2\times 10^3 \ J \ kg^{-1} \ K^{-1}$	
		[1	mark]
	A $4.4 \times 10^{-4} \text{ m}^3$	0	
	B $2.7 \times 10^{-3} \text{ m}^3$	0	
	C $3.9 \times 10^{-3} \text{ m}^3$	0	
	D $2.3 \times 10^{-1} \text{ m}^3$	0	
10	What is the unit of specific latent	heat in fundamental (base) units?	
		[1	mark]
	$\mathbf{A} \ \mathrm{J} \ \mathrm{kg}^{-1}$	0	
	B $m^2 s^{-2} K^{-1}$	0	
	C $m^2 s^{-2}$	0	
	D kg m ² s ⁻²	0	
	Which is the correct unit for U -values	alue?	
		[1	mark]
	A J $m^{-2} K^{-1}$	0	
	B J K ⁻¹	0	
	C $W m^{-2} K^{-1}$	0	
	$\mathbf{D} \ \mathbf{W}^2 \ \mathbf{K}^{-1}$	0	

IB/M/Jan19/PH04

14	An ideal gas has a temperature $(c_{\rm rms})$ of the molecules in the gas	of $100 ^{\circ}\text{C}$. It is heated so that the root mean is doubled.	square speed	not write side the box
	What is the new temperature of t	he gas?	[1 mark]	
	A 200 °C	0		
	B 400 °C	\bigcirc		
	c 1200 °C	0		
	D 1500 °C	0		
1 5	Two containers X and Y each co The volume of X is twice the volu The temperature of the gas in X The temperature of the gas in Y The number of molecules in X is	ntain an ideal gas at the same pressure. ime of Y . is 150 K. is 300 K. <i>N</i> .		
	What is the number of molecules	s in Y ?	[1 mark]	
	A $\frac{N}{4}$	0		
	$\mathbf{B} \ \frac{N}{2}$	0		
	C <i>N</i>	0		
	D 2N	0		
1			—	

2 0	An exam	ple of nuclear fission is:			Do not writ outside the box
		$^{235}_{92}\text{U} + ^{1}_{0}\text{n} \rightarrow$	$X + {}^{91}_{36}Kr + 3{}^{1}_{0}n$		
	What is	the number of neutrons in nucl	leus X?	[1 mark]	
	A 85		0		
	B 86		0		
	C 106		0		
	D 142		0		
21	Which o	ombination of materials can be	used for moderators and cor	atrol rods in nuclear	
	reactors	?		[1 mark]	
		Moderator	Control rod		
	Α	Water	Graphite	0	
	В	Water	Boron		
	с	Cadmium	Boron	0	
	D	Cadmium	Graphite	0	
22	Δ fissile	material produces an average	of 2.4 neutrons per fission		
	For a cri	tical mass of the material, how	many neutrons per fission.	n average, will not	
	induce f	urther fissions?		[1 mark]	
	A 2.4	0			
	B 1.4	0			
	C 1.2	0			
	D 0	0			

	A pumped storage system has an upper reservoir at a vertical height of 75 m about pumps. The pumps are supplied with a power of 1.7 MW . The density of water is 1000 kg m^{-3} . What is the maximum volume of water that the pumps can deliver every hour into upper reservoir?	ove the	box
	What is the maximum volume of water that the pumps can deliver every hour into		
		o the	
		[1 mark]	
	A 2.3 m^3		
I	B 2300 m ³		
(C 8300 m ³		
I	D 8 300 000 m^3		
2 4	Used fuel rods are stored in water for several months after they are removed fror nuclear reactor.	ma	
	This is because used fuel rods:	[1 mark]	
	A emit gamma radiation which is completely absorbed by the water.	0	
I	B continue to generate energy and are cooled by the water.	0	
	C undergo a chemical reaction with the water which reduces their radioactivity.	0	
I	D can generate steam from the water to drive a turbine.	0	
2 5	What does the equation $E = mc^2$ suggest?	[1 mark]	
	A The mass of a substance is increased when it is heated.	0	
I	B The mass of a nucleus is greater than the mass of its constituent parts.	0	
(C The total mass of a nucleus is converted into kinetic energy when the nucleus decays.	0	
I	D Energy is required to initiate proton–antiproton annihilation.	0	

26	Which equation summarises the hydrogen cycle in the Sun?	[1 mark]	Do not write outside the box
	A $6_1^1 H \rightarrow {}_2^4 He + 2_1^1 H + 2\beta^+ + 2\gamma + 2\nu_e$		
	B $6_1^1 \text{H} \rightarrow {}_2^4 \text{He} + 2_1^1 \text{H} + 2\beta^+ + 2\gamma + 2\overline{\nu_e}$		
	C $6_1^1 \text{H} \rightarrow {}_2^4 \text{He} + 2_1^1 \text{H} + 2\beta^- + 4\gamma + 2\nu_e$		
	D $6_1^1 \text{H} \rightarrow {}_2^4 \text{He} + 2_1^1 \text{H} + 2\beta^+ + 4\gamma + 2\overline{\nu_e}$		
2 7	Spheres P and Q of equal mass each rotate around an axis through their centres.		
	The moment of inertia of a sphere rotating about an axis through its centre is $\frac{2}{5}mr$,2	
	where m is the mass of the sphere and r is the radius of the sphere.		
	Q has twice the radius of P. Q has twice the angular velocity of P. P has rotational kinetic energy <i>E</i> .		
	What is the rotational kinetic energy of Q ?	[1 mark]	
	A $\frac{E}{16}$		
	B <i>E</i>		
	C 4 <i>E</i>		
	D 16 <i>E</i>		

The table shows the masses of three planets and the radii of their orbits around the Sun.

Planet	Mass / $ imes 10^{24}$ kg	Orbital radius / $ imes 10^{12}$ m
Saturn	568	1.4
Uranus	87	2.9
Neptune	102	4.5

Which shows the planets arranged in order of decreasing moment of inertia around the Sun?

[1 mark]

Do not write outside the

box

A Saturn, Uranus, Neptune \bigcirc B Saturn, Neptune, Uranus \bigcirc C Neptune, Saturn, Uranus \bigcirc D Neptune, Uranus, Saturn \bigcirc

Turn over ►

box

3 5	What is an advantage of pumped storage systems?	[1 mark]	Do not write outside the box
	A They have efficiencies greater than one because they use energy that would otherwise be wasted.	0	
	B Electricity can be generated rapidly by the system at times of peak demand.	0	
	C Sites for development of pumped storage systems are available in most geographical locations.	0	
	D Response times for starting and stopping production are similar to those of nuclear power stations.	0	30
	END OF QUESTIONS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.oxfordaqaexams.org.uk after the live examination series.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.
	Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.

