

Please write clearly in	ı block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	ノ

INTERNATIONAL AS PHYSICS

Unit 2 Electricity, waves and particles

Thursday 16 January 2020

07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11–24		
TOTAL		

Section A

	Answer all questions in this sectio	n.	
0 1	Figure 1 shows some of the energy levels of a single atom.		
	Figure 1		
		energy / eV	
		0.00	
		-1.57	
		3.71	
		5.74	
	ground state	-10.38	
0 1.1	The atom is in its ground state. A photon of energy	$8.81~{ m eV}$ is incident on the atom.	
	Describe a likely outcome of this event.	[2 marks]	
0 1.2	Multiple atoms, with the same energy levels as show ground state.	n in Figure 1 , return to the	
	State how many different photon wavelengths can be	e observed. [1 mark]	

number of wavelengths =

3

Do not write outside the

			outside box
0 2	Light passing from glass to water has a critical angle of 61°.		
0 2 . 1	State what is meant by critical angle.	[1 mark]	
0 2.2	Glass has a refractive index of 1.52		
	Calculate the speed of light in water.		
		[3 marks]	
	speed =	m s ⁻¹	4
	Turn over for the next question		
	·		

Figure 2 shows a circuit containing two fixed resistors, a variable resistor and a battery with negligible internal resistance.

Voltmeters $\boldsymbol{V}_{\!_{1}}$ and $\boldsymbol{V}_{\!_{2}}$ are connected across the fixed resistors.

Figure 2

The resistance of the variable resistor is increased.

State and explain how the readings on $\boldsymbol{V}_{\!_{1}}$ and $\boldsymbol{V}_{\!_{2}}$ are affected by this change.

[4 marks]

V ₁		
$\overline{\mathrm{V}_{2}}$		

Figure 3 shows part of the line spectrum for light emitted from a neon lamp. A wavelength scale is shown.

Figure 3

[2 marks]	
-----------	--

0 4 . 2	Calculate the energy of the photon responsible for line X in the spectrum in Figure 3 .
	[3 marks]

photon energy = J

5

Figure 4 shows the apparatus used to investigate stationary waves on a string.

The frequency of the vibration generator is adjusted until the first-harmonic stationary wave is observed on the string. This is repeated for different loads.

Figure 4

0 5 . 1

Show that the frequency f of the first harmonic is related to the tension T in the string by the following equation:

$$f^2 = \left(\frac{1}{4lm}\right)T$$

where l = length of the vibrating part of the stringm = mass of the vibrating part of the string.

[2 marks]

 $\boxed{\mathbf{0} \quad \mathbf{5}}$. $\boxed{\mathbf{2}}$ Figure **5** is a graph showing the variation of f^2 with T for this investigation.

Figure 5

Length l is 2.600 m.

Determine, using **Figure 5**, an accurate value for m.

[3 marks]

m = kg

Question 5 continues on the next page

		Do not write outside the
0 5 . 3	To measure the length of $2.600~\mathrm{m}$, a metre ruler or a $5~\mathrm{m}$ tape measure may be used. Both the metre ruler and the tape measure have a $1~\mathrm{mm}$ resolution.	box
	Explain the advantage of using the 5 m tape measure.	
	[2 marks]	
		7

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Electrons are accelerated from rest through a potential difference V as part of an electron-diffraction experiment.

1 Each electron gains a kinetic energy of 1.5×10^{-15} J.

Calculate V.

[2 marks]

V = V

Show that the momentum of an electron after acceleration is approximately $5 \times 10^{-23}~kg~m~s^{-1}$.

[3 marks]

	11
0 6.3	The electrons are then incident on a graphite crystal. The crystal diffracts the electrons, creating a second-order maximum at an angle of 10° to the zero-order maximum.
	The crystal can be modelled as a diffraction grating where the gap between each layer in the crystal behaves like the slit spacing of the grating.
	Calculate the effective slit spacing of this diffraction grating. [4 marks]

 $\mathsf{slit}\;\mathsf{spacing} = \underline{\hspace{1cm}} m$

Turn over for the next question

Turn over ▶

9

0 7.1	State what is meant by the threshold frequency of radiation in the photoelectric effective frequency frequency of radiation in the photoelectric effective frequency frequen	
0 7.2	Monochromatic light with a photon energy of $3.7\times 10^{-19}\mathrm{J}$ is incident on a metal surface.	
	Photoelectrons with a maximum kinetic energy of $5.7 \times 10^{-20} \mathrm{J}$ are emitted from the surface.	!
	Calculate, in eV, the work function of the metal. [2 mail	·ks]
	work function =	eV

0 7.3	The total power of the monochromatic light incident on the surface is $1.3 \times 10^{-2} \ \mathrm{W}.$	ou
	Calculate the maximum number of photoelectrons that can be emitted from the surface per second. [2 marks]	
	maximum number per second =	
0 7.4	The light is replaced with a different monochromatic light with half the wavelength but the same incident power.	
	Describe and explain any effect on the photoelectrons. [3 marks]	

0 8.1	Define electrical resistance.	1 mark]

Figure 6 shows the $\emph{I-V}$ characteristic of a filament lamp ${\bf X}$.

0 8.2 Figure 7 shows a battery of emf 3.0 V and negligible internal resistance connected to X.

Figure 7

Calculate the resistance of **X** in the circuit shown in **Figure 7**.

[2 marks]

resistance =	Ω

0 8 . 3 Calculate the power dissipated by **X** in this circuit. State the unit for your answer in fundamental (base) units.

[3 marks]

power = unit =

Question 8 continues on the next page

Figure 8

Explain for this circuit how the resistance of ${\bf Y}$ compares with the resistance of ${\bf X}$. Calculations are ${\bf not}$ required.

[3 marks	

END OF SECTION A

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Section B

Answer all questions in this section.

0 9

The seat of a bicycle is attached to the main body of the bicycle by a single vertical spring, as shown in **Figure 9**.

Figure 9

The spring has a spring constant of $7.2\times10^4~N~m^{-1}$. The mass of the rider is 68~kg. Assume that the weight of the rider is fully supported by the spring and that the mass of the seat is negligible.

0 9. **1** Show that the time period for free oscillations of the seat is approximately 0.2 s when the rider is sitting on it.

[2 marks]

0 9 . 2	Figure 10 shows the bicycle and rider approaching a series of speed bumps that are
	equally spaced.

Figure 10

When the bicycle travels over the speed bumps at a certain speed, the rider experiences large-amplitude vertical oscillations.

Identify and explain the effect that causes the large-amplitude oscillations.	[3 marks]

 $\boxed{ \textbf{0} \quad \textbf{9} }$. The rider experiences large-amplitude oscillations when the bicycle travels at 5.8 m s^{-1} .

Calculate the distance between adjacent speed bumps.

[2 marks]

distance =	n

Figure 11 shows apparatus used to determine the wavelength of laser light using Young's double-slit method.

Figure 11

1 0 . 1

Figure 12 shows the actual size of part of the interference fringe pattern seen on the screen.

Figure 12

Determine, in mm, an accurate measurement for the fringe spacing w.

[2 marks]

w = mm

1 0.2	Calculate the percentage uncertainty in your value for w .		outside box
		[2 marks]	
	percentage uncertainty =		
1 0 . 3	The distance between the slits is $0.420~mm$ with an uncertainty of $\pm 1.2\%$. The distance from the slits to the screen is $8.40~m$ with an uncertainty of ± 0.60	5%.	
	Calculate, in nm, the wavelength of the laser light.	[2 marks]	
		[Z IIIdi KƏ]	
	wavelength =	nm	
1 0 . 4	Calculate the absolute uncertainty in your value for the wavelength.	[3 marks]	
	absolute uncertainty =	nm	9
	END OF SECTION B		

Section C

Each of the questions in this section is followed by four responses, **A**, **B**, **C** and **D**.

For each question select the best response.

	ne answer per questior ch question, completely	n is allowed. v fill in the circle alongside the appropriate answer.	\
CORRECT	METHOD •	WRONG METHODS 🔯 💿 😂 🍑	
If you w	ant to change your ans	swer you must cross out your original answer as shown.	
If you w as show		wer previously crossed out, ring the answer you now wish to select	
l .	ay do your working in th use additional sheets f	e blank space around each question but this will not be marked. or this working.	
1 1		$.5\ V$ and an internal resistance of $2.0\ \Omega.$ sistance is connected directly from one terminal of the cell to the	
	What is the energy dis	ssipated in the cell in 5 minutes? [1 mark]
	A 5.6 J	0	
	B 340 J	0	
	C 900 J	0	
	D 1400 J	0	

1 2	A metal wire has resistance R . A second wire made from the same metal is 50% longer but has the same volume as the first wire.		
	What is the resistance of the second metal wire?	[1 mark]	
	A 0.67 <i>R</i>		
	B 1.5 <i>R</i>		
	C 2.0 <i>R</i>		
	D 2.3 <i>R</i>		
1 3	A cable consists of superconducting wires attached in parallel to a ste	eel wire.	
	superconducting wires steel wire		
	What is the purpose of the steel wire in the cable?	[1 mark]	
	A to increase the critical temperature of the superconductor	0	
	B to increase the strength of the cable	0	
	C to reduce the resistance of the cable when it is superconducting	0	
	D to reduce the current in the cable	0	

Two resistors ${\bf X}$ and ${\bf Y}$ have resistances $R_{\bf X}$ and $R_{\bf Y}$.

 $R_{\rm Y}$ is greater than $R_{\rm X}$.

When **X** and **Y** are combined in parallel, the equivalent resistance is R_T .

Which is correct?

[1 mark]

A $R_{T} < R_{X} < R_{Y}$

0

B $R_{X} < R_{T} < R_{Y}$

0

C $R_{X} < R_{Y} < R_{T}$

0

D $R_{T} < R_{Y} < R_{X}$

0

1 5 A battery **X** has emf ε and internal resistance r. The graph shows the variation of terminal pd V_T with current I for the battery.

The line for battery **X** is shown again below as a dashed line.

Which line shows the variation of $V_{\rm T}$ with I for a battery of emf $\frac{\varepsilon}{2}$ and negligible internal resistance?

[1 mark]

- Α
- 0
- В
- 0
- С
- 0
- D
- 0

1 6 A resistor of resistance R is connected to a cell of emf ε and internal resistance r. The current in the circuit is I.

What is the power dissipated in the resistor of resistance *R*?

[1 mark]

Α *Ιε*

0

B $I^{2}(R+r)$

0

c $\frac{\varepsilon^2}{R+r}$

0

 $\mathbf{D} \ \frac{\varepsilon^2 R}{\left(R+r\right)^2}$

- 0
- Two pendulums have the same length and perform undamped small-angle oscillations with the same amplitude.

One pendulum bob has a greater mass than the other.

Which quantity is **not** the same for both pendulums?

[1 mark]

- A average speed
- 0

B time period

0

C total energy

- 0
- **D** maximum speed
- 0

 $oxed{1\ \ 8}$ Which graph shows the variation of kinetic energy $E_{\mathbf{k}}$ with displacement x for a mass–spring system performing simple harmonic motion?

[1 mark]

Α

В

C

D

- Α
- 0
- В
- 0
- С
- 0
- D

1 9 What cannot be observed with sound waves?

[1 mark]

A diffraction

0

B dispersion

0

C polarisation

0

D refraction

0

Do not write outside the box

2 0 Unpolarised light passes perpendicularly through two polarising filters before reaching a sensor that detects its intensity *I*.

The first filter is rotated through an angle θ about an axis parallel to the light beam.

Which graph on page 29 shows the variation of intensity I with angle θ ?

[1 mark]

Α

В

С

D

- Α
- 0
- В
- 0
- С
- 0
- D
- 0

Turn over for the next question

Do not write outside the box

In the derivation of the diffraction grating equation $n\lambda = d \sin \theta$, a diagram similar to the one below can be used.

Which of the labelled angles α , β or γ is equivalent to the angle θ in the equation?

[1 mark]

Α	α	only	/

0

B α and β only

0

 ${\bf C} \ \gamma \ \text{only}$

0

D β and γ only

0

2 2 A pulse of white light passes along the axis of a straight optical fibre. The pulse is broader when it leaves the optical fibre.

What causes this effect?

[1 mark]

- A absorption
- **B** attenuation
- C material dispersion
- **D** modal dispersion
- **2** 3 Light crosses the boundary from air into a substance that has a refractive index of 2

What happens to the speed, frequency and wavelength of the light as it crosses the boundary?

[1 mark]

	Speed	Frequency	Wavelength	
A	halves	stays the same	halves	
В	doubles	stays the same	doubles	
С	doubles	doubles	stays the same	
D	halves	halves	doubles	

Do not write outside the

2 4 The diagram shows an X-ray tube.

Which row identifies parts **P** and **Q**, and the direction of travel of the electrons?

[1 mark]

	Р	Q	Direction of electron travel	
Α	anode	cathode	from P to Q	0
В	anode	cathode	from Q to P	0
С	cathode	anode	from P to Q	0
D	cathode	anode	from Q to P	0

14

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

