

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.)

INTERNATIONAL A-LEVEL PHYSICS

Unit 3 Fields and their consequences

Tuesday 21 January 2020

07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

01.2	The resultant force F on the oscillating trolley varies with its displacement x from the equilibrium position by:	Do not write outside the box
	F = -kr	
	where k is the spring constant	
	[1 mark]	
01.3	Show how the equation for the resultant force F on the trolley can be combined with $F = ma$ and other equations to give	
	$T = 2\pi \sqrt{\frac{m}{2}}$	
	\ <i>k</i> [4 marks]	
	Turn over for the next question	7
	Turn over ►	

02.1	Determine <i>Q</i> ₀ . [2 marks]
	$Q_0 = $ C
02.2	Show that the capacitance of the capacitor is approximately $120~\mu F.$ [1 mark]
0 2 . 3	Show, using Figure 3 , that the time constant of the circuit is approximately 80 s. [3 marks]
	Question 2 continues on the next page

Do not write outside the box

02.4	The resistance of \mathbf{R}_1 is 3.2 M Ω .	Do not write outside the box
	Calculate, in $M\Omega$, the resistance of R_2 . [3 marks]	
	resistance of \mathbf{R}_2 = M Ω	
		I

02.5	Figure 4 shows the circuit with S open and R_2 removed.	Do not write outside the box
	Figure 4	
	S	
	5.0 V \mathbf{R}_1 The capacitor is recharged so that the initial potential difference across the capacitor	
	is 5.0 V. S is now closed.	
	Compare the initial rate of discharge of the capacitor in Figure 4 with the initial rate of discharge of the capacitor in Figure 3 . [3 marks]	
		12
	Turn over ►	
0 7	IB/M/Jan20/PH03	

2 Figure 6 shows the aircraft travelling at an increased speed with its wings making an angle θ to the horizontal.

The magnitude of ${\bf L}$ has increased. The aircraft moves in a horizontal circle at a constant speed.

A resultant force **R** acts on the aircraft in **Figure 6**. **R** is produced by the weight **W** of the aircraft and **L**.

Draw, in the space below, a vector diagram to show how the addition of \mathbf{W} and \mathbf{L} produces \mathbf{R} .

[2 marks]

Do not write outside the box

Question 3 continues on the next page

	Calculate the gravitational field strength of the Earth at this radius.	[2 marks]	Do not write outside the box
	gravitational field strength =	N kg ⁻¹	
04.3	The satellite and the Moon orbit the Earth at the same angular speed.		
	Calculate the centripetal acceleration of the satellite.	[2 marks]	
	centripetal acceleration =	m s ⁻²	
	Question 4 continues on the next page		

0 5.2	Explain the shape of the graph in Figure 12 .	[3 marks]
0 5.3	The length of the magnet is 4.0 cm and the diameter of the coil is 1.5 cm .	
	Estimate, using Figure 12 , the speed of the trolley between positions A and	B. [2 marks]
	speed =	$m s^{-1}$
	Question 5 continues on the next page	
	_	

Do not write outside the box

Section B	Do not write outside the box
Each of the questions in this section is followed by four responses, A , B , C and D .	
For each question select the best response.	
 Only one answer per question is allowed. For each question, completely fill in the circle alongside the appropriate answer. CORRECT METHOD WRONG METHODS © © © If you want to change your answer you must cross out your original answer as shown. If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working. 	
0 6 Which is a scalar quantity? [1 mark]	
A change in momentum	
B absolute electric potential	
C gravitational field strength	
D magnetic flux density	
Turn over for the next question	

Do not write outside the

box

1 1	Two a	apples are touching eac	h other.		
	What	is the best estimate for	the gravitational force b	petween the two apples?) [1 mark]
					[1 mark]
	A 10 ⁻	⁻²⁰ N	0		
	B 10 ⁻	⁻¹⁵ N	0		
	C 10	$^{-10}$ N	0		
	D 10 ⁻	⁻⁵ N	0		
1 2	A plar	net has a density of 1.9	$ imes 10^3~{ m kg}~{ m m}^{-3}$ and a diar	meter of 5.2×10^3 km.	
	What	is the gravitational field	strength at the surface	of the planet?	
					[1 mark]
	A 1.4	$\times 10^{-3} \mathrm{N \ kg^{-1}}$	0		
	B 2.8	$8 \times 10^{-3} \mathrm{N \ kg^{-1}}$	0		
	C 1.4	$N kg^{-1}$	0		
	D 2.8	$S N kg^{-1}$	0		
1 2	Apot	allita is mayed from a bi	abor orbit to a lower orb	. `#	
3	A Sate			JIL.	
	vvnat	energy changes occurs			[1 mark]
		Kinetic energy	Gravitational potential energy	Total energy	
	Α	decreases	decreases	increases	0
	В	decreases	increases	decreases	0
	С	increases	decreases	increases	0
			dooroooo	docroasos	

1 6	A deuterium atom consists of one electron and a nucleus.
	The nucleus has one proton and one neutron.
	$F_{\rm E}$ is the electrostatic force on the electron due to the deuterium nucleus.
	$F_{\rm G}$ is the gravitational force on the electron due to the deuterium nucleus.

What is the ratio
$$\frac{F_{\rm E}}{F_{\rm G}}$$
?

[1 mark]

Do not write outside the box

A	8.4 ×	10 ¹⁸	0
в	1.2 ×	10 ³⁶	0
С	1.1 ×	10 ³⁹	0
D	2.3 ×	10 ³⁹	\bigcirc

Turn over for the next question

2 2

2 3

2 4	A capacitor of capacitance 10	$00 \ \mu F$ stores charge Q_0 .	
	The capacitor is discharged t	hrough a $120~\mathrm{k}\Omega$ fixed resistor.	
	What is the time taken for the	e charge on the capacitor to become $0.25Q_0$?	[1 mark]
			[mang
	A 4.2 s	0	
	B 8.3 s	0	
	C 17 s	0	
	D 24 s	0	
2 5	A 220 μF capacitor is charged discharged through an $18~k\Omega$	d to a potential difference of $6.0~{ m V}_{\odot}$ The capacitor 2 resistor.	is then
	What is the potential different	ce across the resistor after 2.0 s?	[1 mark]
			[n mark]
	A 0.6 V	0	
	B 2.4 V	0	
	C 3.6 V	0	
	D 4.4 V	0	
26	A sample of gallium-67 has a	an initial activity of 37 MBq.	
	The half-life of gallium-67 is	78 hours.	
	What is the initial number of	gallium–67 atoms in the sample?	[1 mark]
			[i mark]
	A 4.2×10^9	0	
	B 2.2×10^{11}	0	
	C 2.5×10^{11}	0	
	D 1.5×10^{13}	0	

Do not write 3 0 Which statement is true for a charged particle in a cyclotron? [1 mark] **A** Its speed is constant as it travels through a dee. \bigcirc **B** Its speed is constant in the gap between the dees. \bigcirc **C** It accelerates in the dees only. **D** It accelerates in the gap between the dees only. 3 1 Lenz's law is an example of the conservation of [1 mark] A charge. \bigcirc \bigcirc B energy. C flux linkage. \bigcirc **D** momentum. \bigcirc 3 2 A coil has 40 turns and an area of 0.20 m^2 . The coil rotates at a constant frequency f in a uniform magnetic flux density of 1.5 mT. The maximum emf induced in the coil is 0.24 V. What is f? [1 mark] **A** $3.2 \times 10^{-3} \text{ Hz}$ \bigcirc **B** $2.0 \times 10^{-2} \text{ Hz}$ \bigcirc **C** 3.2 Hz $^{\circ}$ \bigcirc **D** 20 Hz

outside the

box

40

Do not write outside the box

3 5 An ideal transformer has 300 turns in the primary coil and 600 turns in the secondary coil.

The primary coil is connected to an ac source that has a peak potential difference of $10\ V$ and a frequency of $20\ Hz.$

What is the peak potential difference and the frequency of the output from the secondary coil?

[1 mark]

	Peak potential difference / V	Frequency / Hz	
Α	5	20	[
В	5	40	
С	20	20	
D	20	40	

END OF QUESTIONS

30

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

