

Please write clearly in block ca	pitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature I declare t	his is my own work.

INTERNATIONAL AS PHYSICS

Unit 2 Electricity, waves and particles

Monday 11 January 2021

07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

	Section A	Do ou
	Answer all questions in this section.	
0 1	A metal has a resistivity of $4.9 \times 10^{-7} \ \Omega \ m.$	
0 1.1	Define resistivity. [1 mark]	
0 1.2	A wire resistor of resistance $6.8~\Omega$ is made from the metal. The diameter of the wire is 2.4×10^{-4} m.	
	Calculate the length of the wire. [2 marks]	
	length = m	-
02	A string is stretched between two fixed points. It is plucked in the middle so that a stationary wave forms on the string.	
	Explain how the stationary wave is formed. [3 marks]	

0 3	A narrow single slit of width w is illuminated with light from a laser. A diffraction pattern is observed on a screen several metres away from the slit.	Do not write outside the box
	A total of five maxima is observed on the screen.	
03.1	Sketch, on Figure 1 , a graph showing how the light intensity varies with position on the screen. O marks the central point of the pattern. [2 marks]	
	Figure 1	
	light intensity	
	O position on screen	
	The narrow single slit is replaced with a slit of width greater than <i>w</i> . Nothing else is changed. A new diffraction pattern is formed.	
03.2	Label, on the position axis of Figure 1 , the position M of the first maximum to the left of O for the new diffraction pattern. [1 mark]	
03.3	Describe any change to the intensity of the maxima in the new diffraction pattern. [1 mark]	
		4

04	A car battery has an emf of 12.2 V and an internal resistance of 0.015Ω . A resistor of resistance $7.6 \times 10^{-3} \Omega$ is connected directly between the terminals of the battery. Calculate the current in the resistor. [2 marks]	Do not write outside the box
04.2	current =A Calculate the rate of heating inside the battery as soon as the resistor is connected between the terminals. [2 marks]	
	rate of heating = W	4

0 5	Photoelectrons are emitted from a sodium surface when it is illuminated with monochromatic electromagnetic radiation. The stopping potential of these photoelectrons is 3.42 V . Show that the maximum kinetic energy of the photoelectrons is approximately $5.5 \times 10^{-19} \text{ J}$. [1 mark]	Do not write outside the box
05.2	Calculate the wavelength of the radiation that is incident on the sodium surface. work function of sodium = 2.36 eV	
	[3 marks]	
	wavelength = m Question 5 continues on the next page	

Turn over ►

Do not write outside the 0 5 3 box The frequency f of the electromagnetic radiation is now varied. The maximum kinetic energy $E_{k(max)}$ of the photoelectrons is measured for each value of*f*. **Figure 2** shows the variation of $E_{k(max)}$ with *f*. Figure 2 $E_{k(max)}$ 0 f

> Magnesium and caesium surfaces are also illuminated with electromagnetic radiation and photoelectrons are emitted from the surfaces.

> Draw, on **Figure 2**, lines to show the variation of $E_{k(max)}$ with *f* for magnesium **and** for caesium.

Label your lines.

work function of magnesium = 3.68 eVwork function of caesium = 2.14 eV

[2 marks]

06.2	Draw a suitable circuit in which the rheostat is used as a variable resistor.	2 marks]	Do not write outside the box
06.3	Draw a suitable circuit in which the rheostat is used as a potential divider.	[1 mark]	
06.4	Explain the advantage of using the rheostat as a potential divider rather than variable resistor.	as a [1 mark]	5

The initial temperature in the tank is 20 $^{\circ}$ C.	
7 . 1 Switch S is closed and the potential difference across the lamp is 3.0 V.	
Show that the resistance of the parallel combination of the thermistor and lamp immediately after S is closed is approximately 2.7 Ω .	D
[4	marks]
7 . 2 Determine the resistance of the variable resistor.	
[2	2 marks]
resistance =	0
resistance =	Ω
resistance =	Ω [1 mark]
resistance = 7.3 Determine the power of the lamp immediately after S is closed.	Ω [1 mark]

07.4	Suggest how the resistance of the parallel combination of the lamp and thermistor is likely to change in the period immediately after S is closed. [2 marks]	Do not write outside the box
07.5	On another occasion the initial temperature in the tank is again 20 °C. This time, the resistance of the variable resistor in Figure 6 is increased before S is closed. State and explain the effect of this change on the initial rate of temperature increase in the tank. [2 marks] [2 mark	11

IB/M/Jan21/PH02

		Do not write outside the
	Mirror \mathbf{M}_2 is moved a distance <i>d</i> to a new position closer to the beam splitter.	box
	As \mathbf{w}_2 moves, light entering the camera changes from maximum to minimum intensity.	
0 8.2	Explain the change in light intensity.	
	[2 marks]	
083	Explain using an appropriate calculation, why the minimum value of d is	
	approximately 1.6×10^{-7} m.	
	The wavelength of light from the lager is 650 nm	
	[2 marks]	
	Question 8 continues on the next page	
	T N	1

Turn over 🕨

IB/M/Jan21/PH02

		Do not write outside the
$[\mathbf{v} \mid \mathbf{o}]$. \mathbf{D} A different laser is now used. This laser emits light with a smaller	wavelength.	JUX
Suggest how this change affects the resolution of the interferomet	er. [1 mark]	
08 . 6 The optical fibre with an uneven end is used to transmit informatio	n.	
Explain why the uneven end of the optical fibre increases modal d	ispersion. [2 marks]	
		12
END OF SECTION A		

		Do not write outside the
1 0	Pendulums are used to make some clocks keep the correct time.	DOX
	Figure 13 shows a clock with a pendulum. The pendulum is made from a rigid bar of negligible mass with a large mass near the lower end.	
	Figure 13	
	point of suspension	
	rigid bar	
	large mass	
	centre of mass of pendulum	
	Assume that the pendulum behaves as a simple pendulum with a length equal to the distance L between the point of suspension and the centre of mass of the pendulum.	
	The pendulum must oscillate with a time period of $1.400\ {\rm s}$ for the clock to keep correct time.	
10.1	The pendulum oscillates with a period of 1.402 s.	
	Calculate the error in the time measured by the clock in 24 hours. [3 marks]	
	error =s	

10.2	Show that L is approximately 0.5 m.	[2 marks]	Do not write outside the box
103	The owner of the clock wants to make the clock more accurate by attaching	a small	
	additional mass to the pendulum.	a sman	
	Explain where the owner should attach the small additional mass.	[2 marks]	
	The clock is moved to a warmer room, causing the rigid bar to increase in le	nath	
	Explain how the owner must move the small additional mass in order for the	clock to	
	keep accurate time.	[1 mark]	
			8
	END OF SECTION B		

			Section C			Do not write outside the box
	Each	of the questions in th	nis section is followed by four r	esponses, A , B , C and	D.	
		For eac	ch question select the best res	ponse.		
Only or For eac correct If you wa as show	ne ans th que METHOL ant to ish to rn.	wer per question is stion, completely fill wROI change your answe return to an answer	allowed. in the circle alongside the app NG METHODS 🗴 ⓒ 🛋 & r you must cross out your origi previously crossed out, ring th	ropriate answer. nal answer as shown. e answer you now wisł	The select	
You may Do not i	y do y use ac	our working in the b Iditional pages for th	lank space around each questi nis working.	on but this will not be n	narked.	
1 1	Which	n row correctly relate	es a type of wave to its directio	n of oscillation and its p	oolarisation? [1 mark]	
		Type of wave	Direction of oscillation	Polarisation		
	A	transverse	parallel to the direction of energy transfer	can be polarised	0	
	В	transverse	perpendicular to the direction of energy transfer	cannot be polarised	0	
	с	longitudinal	parallel to the direction of energy transfer	cannot be polarised	0	

can be polarised

D

longitudinal

perpendicular to the

direction of energy transfer

 \bigcirc

Which row shows the resistance of the device at point X and the power transferred in the device at point X?

Do not write outside the box

	Resistance	Power transferred	
Α	the gradient at X	the area under the curve	0
В	the gradient at X	V _x I _x	0
с	$\frac{V_{\rm X}}{I_{\rm X}}$	the area under the curve	0
D	$\frac{V_{\rm X}}{I_{\rm X}}$	V _x I _x	0

Turn over for the next question

Turn over ►

		Do not write outside the
1 6	A mass–spring system oscillates with a period of T . The spring constant is k and the mass is m . A second mass–spring system has a spring constant of $3k$ and a mass of $5m$.	DOX
	What is the period of oscillation of the second system?	
	[1 mark]	
	A 0.36 <i>T</i>	
	B 0.78 <i>T</i>	
	C 1.3 <i>T</i>	
	D 2.8 <i>T</i>	
17	A mass–spring system will resonate only when the forcing oscillation has: [1 mark]	
	A an amplitude that is any multiple of the amplitude of the resonating system.	
	B an amplitude that is equal to the amplitude of the resonating system.	
	${f C}$ a frequency that is any multiple of the natural frequency of the resonating system. $igsqcolumber$	
	D a frequency that is equal to the natural frequency of the resonating system.	
	Turn over for the next question	

Turn over ►

	Transition	photon / 10 ¹⁵ Hz	
A	Q to O	3.3	0
в	P to O	8.1	0
с	O to Q	3.3	0
D	O to P	8.1	0

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
-	
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet
	is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

