

Please write clearly ir	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		
	I declare this is my own work.	

INTERNATIONAL A-LEVEL PHYSICS

Unit 3 Fields and their consequences

Monday 17 January 2022

07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

0 1.1	Calculate, in mm, <i>A</i> .	Do not write outside the box
	[4 marks]	
	A = mm	
	4	
0 1.2	The load is brought to rest and then pulled vertically downwards a distance $\frac{\pi}{2}$	
	below its equilibrium position.	
	It is released and oscillates with SHM. Spring X has negligible mass.	
	Sketch, on Figure 2 , the variation of the total energy of the mass–spring system	
	with displacement. [2 marks]	
	Question 1 continues on the next page	

Turn over 🕨

	Spring X is replaced with an elastic string Y that obeys Hooke's law. Figure 3 shows the load attached to the end of Y. Y has negligible mass. Y has an extension of 42 mm when the load is at rest in its equilibrium position. Figure 3 //////Y	Do not write outside the box
0 1.3	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
	Show that the period of the oscillations is approximately 0.4 s. [2 marks]	
	The load on Y is now pulled 50 mm vertically downwards below its equilibrium position and released. The movement of the load fulfils the conditions for SHM until the load reaches a position P . When the load is at P , the elastic string Y is at its unstretched length.	
01.4	Calculate the velocity of the load at P. [3 marks]	
	$\textbf{velocity} = \underline{\qquad \qquad } m \ s^{-1}$	

	The load continues to move unwards after reaching D		Do not write outside the
	Explain why this movement above P does not fulfil the conditions for SHM.	[2 morte]	
		[2 marks]	
0 1.6	State whether spring X or elastic string Y has the greater stiffness.		
	Explain your answer.	[2 marks]	
			15
	Turn over for the next question		

Turn over ►

02	Drinking water is taken from an underground lake. (2)	outside
	(2)	
	The water contains small quantities of radioactive isotopes such as tritium $\begin{pmatrix} 3\\1 \end{pmatrix}$.	
	The decay of tritium has a half-life of 12.3 years.	
0 2.1	Water is unsafe to drink when its activity due to tritium decay is greater than 7.6×10^7Bq per cubic metre of water.	
	$2.50\times 10^{-4}m^3$ of water from the lake contains 1.1×10^{10} tritium atoms.	
	Deduce whether the amount of tritium in water from this lake makes it unsafe to drink. [3 marks]	
) 2.2	No more tritium can enter the underground lake. The activity due to tritium decay can be measured to estimate the time for which the water has been in the lake. This time is called the residence time.	
	Suggest why this method is only used when the residence time is less than approximately 150 years	
	[2 marks]	

L

Do not write outside the box 0 2 . 3 Kr-81 is a radioactive isotope of krypton that is found in water. The amount of Kr-81 dissolved in the water can also be used to find the residence time. An amount of water from another underground lake contains 2.2×10^6 atoms of Kr-81 When the water was originally trapped, the same amount of water contained 3.7×10^6 atoms of Kr-81 No more krypton entered the lake after the water was trapped. Calculate, in years, the residence time for this lake. decay constant of Kr-81 = 3.03×10^{-6} year⁻¹ [2 marks] 7 residence time = years Turn over for the next question Turn over ►

03.1	State and explain the direction of the magnetic field in the slider. Refer to the direction of F in your answer.	Do not write outside the box
	[1 mark]	
	In one test of the system, the slider and spacecraft are initially at rest at X in Figure 5 . The power supply is switched on and the magnetic field that passes through the slider has an average flux density of 2.5 T. The magnitude of <i>F</i> is 1.8×10^7 N.	
0 3.2	Calculate <i>I</i> .	
	[1 mark]	
	<i>I</i> =A	
03.3	The total mass of the spacecraft and slider is 125 kg .	
	The spacecraft and slider travel $250~{ m m}$ before reaching the launch point. The launch point is $85~{ m m}$ higher than X .	
	Assume that the magnitude of F is constant and always acts in the same direction as the velocity of the slider. Friction and drag forces are negligible.	
	Determine the speed of the spacecraft and slider when they reach the launch point. [4 marks]	
	$speed = ___ m \ s^{-1}$	
	Question 3 continues on the next page	

03.4	Scientists want to increase the launch speed of the spacecraft from the value obtained in the test. The launch point remains 85 m higher than the starting position. The gain in potential energy is negligible compared to the gain in kinetic energy. The current remains constant as the slider moves along the rails. One scientist suggests increasing the launch speed by increasing the horizontal section of the rails so that the total length travelled by the slider is doubled. Discuss the effect that this change would have on the launch speed. [2 marks]	Do not write outside the box
03.5	The average flux density of the magnetic field in the region of the slider is directly proportional to the current in the rails. A different scientist suggests increasing the launch speed by doubling the current in the rails and slider. Discuss the effect that doubling the current would have on the launch speed. [2 marks]	

The radius of A is 66 μ m and the radius of B is 35 μ m. Each droplet has a charge of -1.2×10^{-12} C. Assume that the charge on A and the charge on B are concentrated at their centres. The distance between the centres of A and B is 1.5 mm. Figure 6 not to scale		
Figure 6 1.5 mm not to scale A B B C		The radius of A is 66 μ m and the radius of B is 35 μ m. Each droplet has a charge of -1.2×10^{-12} C. Assume that the charge on A and the charge on B are concentrated at their centres. The distance between the centres of A and B is 1.5 mm.
A B B C $66 \ \mu m$ $35 \ \mu m$ not to scale		Figure 6
		A B $66 \ \mu m$ $35 \ \mu m$ not to scale
0 4 . 1 Calculate the electrostatic force between A and B.	e]	4 . 1 Calculate the electrostatic force between A and B .
force =N		force =N
0 4 . 2 Movement of the air in the cloud causes A and B to move together until they touch.		4 . 2 Movement of the air in the cloud causes A and B to move together until they touch.
Calculate the work done against the electrostatic force in moving A and B from the position shown in Figure 6 to the position where they touch.	-1	Calculate the work done against the electrostatic force in moving A and B from the position shown in Figure 6 to the position where they touch.
[3 marks]	2]	[3 marks]
work done = J		work done = J
Question 4 continues on the next nage		Question 4 continues on the next page

	Figure 7 shows a simplified diagram of a thundercloud. The bottom of the thundercloud is negatively charged and the top is positively charged. Y is a point inside the thundercloud.	Do not write outside the box
	Figure 7	
	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	
	$E_{\rm Y}$ is the electric field strength at Y .	
04.3	State the direction of $E_{\rm Y}$. [1 mark]	
04.4	A charged water droplet is stationary at Y . The weight of the droplet and the force on it due to $E_{\rm Y}$ are equal in magnitude. The mass of the droplet is 1.38×10^{-9} kg. The charge on the droplet is -2.1×10^{-12} C.	
	Calculate <i>E</i> _Y . [3 marks]	
	$E_{\gamma} = $ V m ⁻¹	

	The base of the thundercloud and the ground beneath it can be modelled as two plates of a parallel-plate capacitor with air between them as shown in Figure 8 .	Do not write outside the box
	Figure 8	
	$\begin{array}{c} \hline \\ ground \\ \hline \\ $	
	The base of the cloud is 340 m above the ground.	
0 4 5	Show that the capacitance of the capacitor is about 1.5×10^{-7} F. [2 marks]	
04.6	The capacitor discharges when lightning strikes the ground. The charge stored in the capacitor before it discharges is $87~{ m C}.$	
	Calculate the energy available for the lightning strikes. [2 marks]	
	energy = J	13
	Turn over N	

0 5	Lunar Prospector was Table 1 shows data a	a space probe that orbited bout the Moon and Lunar P	the Moon. rospector.		Do not write outside the box
F		Table 1			
	Moon	mass / kg	7.348×10^{22}		
	moon	radius / m	1.737×10^{6}		
	Lunar Prospector	mass / kg	1.263×10^{2}		
	Lunar Prospector had	an initial orbital radius of 1.	84×10^{6} m.		
0 5.1	Calculate the accelera	ation of Lunar Prospector in	this orbit.	[2 marks]	
		acceleration =	: 	m s ⁻²	
0 5.2	Calculate the orbital p	eriod of Lunar Prospector ir	this orbit.	[2 marks]	
		orbital perio	od =	S	

	Lunar Prospector was moved to a different orbit where its gravitational potential energy (GPE) was -3.47×10^8 J.	Do not write outside the box
0 5.3	Calculate the height above the Moon's surface of this different orbit. [3 marks]	
	beiekt	
0 5.4	The speed of Lunar Prospector in this orbit was $1.66 \ {\rm km \ s^{-1}}$.	
	Lunar Prospector left orbit and crashed onto the surface of the Moon.	
	Calculate the kinetic energy of Lunar Prospector when it hit the surface of the Moon. Assume that the contribution to the kinetic energy from Lunar Prospector's engines	
	[3 marks]	
	kinetic energy = J	
	Question 5 continues on the next page	

Turn over ►

0 5.5	There are variations in the density of the material of the surface of the Moon. Measurements of Lunar Prospector in orbit were used to detect these variations.	Do not write outside the box
	At one point in its orbit, Lunar Prospector passed over a region where the density of the surface was greater than average.	
	Suggest how this affected the centripetal acceleration of Lunar Prospector. [2 marks]	
		12

IB/M/Jan22/PH03

[2 marks]	
● 6. 4 Explain why <i>T</i> ₁ is greater than <i>T</i> ₂ . [2 marks]	
0 6. 4 Explain why T_1 is greater than T_2 . [2 marks]	
0 6.4 Explain why T_1 is greater than T_2 . [2 marks]	
0 6.4 Explain why T_1 is greater than T_2 . [2 marks]	
0 6.4 Explain why T_1 is greater than T_2 . [2 marks]	
0 6 . 4 Explain why T_1 is greater than T_2 . [2 marks]	
[2 marks]	
	_
END OF SECTION A	

		Section B	Do not write outside the box
	Each of the questions in	this section is followed by four responses, A , B , C and D .	
	For ea	ach question select the best response.	
Only c For ea	one answer per question is the question, completely fi	s allowed. Il in the circle alongside the appropriate answer.	
CORREC	T METHOD WR	DNG METHODS 🗴 💿 📾 🔯	
lf you v	vant to change your answ	er you must cross out your original answer as shown. 🔀	
If you v as sho	vish to return to an answe wn.	r previously crossed out, ring the answer you now wish to select	
You ma Do not	ay do your working in the use additional pages for	blank space around each question but this will not be marked. this working.	
0 7	What is the tesla (T) in f	undamental (base) units? [1 mark]
	A kg $C^{-1} s^{-1}$	0	
	$\textbf{B} \ V \ s \ m^{-2}$	0	
	C A kg s ^{-2}	0	
	D kg $A^{-1} s^{-2}$	0	
08	A sinusoidal voltage with The mean power dissipa	a peak value of 81 V is applied across a resistor. Ited in the resistor is 48 W .	
	What direct current cau	ses a power of 48 W to be dissipated in the resistor? [1 mark	1
	A 0.42 A	0	
	B 0.59 A	0	
	C 0.84 A	0	
	D 1.19 A	0	

Turn over ►

IB/M/Jan22/PH03

1 5

A dielectric material contains polar molecules that rotate in an electric field. The dielectric material is inserted between the plates of a charged parallel-plate capacitor. The capacitance of the capacitor changes.

Which row shows the alignment of the polar molecules and the effect on the capacitance? [1 mark]

	Alignment of polar molecules	Effect on capacitance	
A	+++++++	decreases	<
В	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \end{array} \begin{array}{c} + \\ + \\ + \\ + \end{array} \begin{array}{c} + \\ + \\ + \\ + \\ + \end{array} \begin{array}{c} - \\ + \\ - \\ + \\ - \\ + \end{array} \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	decreases	, ,
С	$\begin{array}{c} - \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \end{array}$	increases	, ,
D	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \end{array} \begin{array}{c} + \\ + \\ + \\ + \\ + \end{array} \begin{array}{c} + \\ + \\ + \\ + \\ + \end{array} \begin{array}{c} - \\ + \\ - \\ + \\ + \\ + \\ + \end{array} \begin{array}{c} - \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	increases	_ ·

1 6

Eddy currents are produced in the core of a transformer when there is an alternating current in the secondary coil.

Which statement about eddy currents is correct throughout a complete cycle of the alternating current?

[1 mark]

Do not write outside the

box

A They are eliminated using a laminated core.	0
B They reduce the flux density of the magnetic field in the core.	0
C They increase if the peak current in the secondary coil increases.	0
D They circulate around the core in the direction of the magnetic field.	0

20	An object of mass 1.5 kg a cross-sectional area of The object is rotated in a The radius of the circle is	g is attached to the end of a string. The string has 0.79 mm^2 . vertical circle at a constant angular speed of 7.5 rad s ⁻¹ . 0.38 m. 0.38 m	Do nu outsi t	ot write ide the box
	What is the stress in the	string when the object is at the bottom of the circle? [1	mark]	
	A 22 kPa	0		
	B 22 MPa	0		
	C 59 kPa	0		
	D 59 MPa	0		
2 1	A planet has a mass hal What is the gravitational	f that of the Earth and a density half that of the Earth. field strength on the surface of the planet? [1	l mark]	
	A 2.5 N kg ^{-1}	0		
	B 3.5 N kg^{-1}	0		
	C 4.9 N kg^{-1}	0		
	D 9.8 N kg ⁻¹	0		5
		END OF QUESTIONS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

