

Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	

INTERNATIONAL A-LEVEL PHYSICS

Unit 4 Energy and Energy resources

Tuesday 17 January 2023

07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

0 1.3	The student performs the investigation in a darkened room to ensure that the	Do not write outside the box
	results are valid.	
	State and explain one other practical procedure that the student must follow to ensure that the results are valid.	
	[2 marks]	
		6

	The angular acceleration of X as it travels down the ramp is 3.6 rad s^{-2} .		Do not write outside the box
02.1	Show, using Figure 4 , that X has rotated by approximately 2.6 rad at t_1 .	[2 marks]	
		[]	
02.2	Determine t_1 .	[1 mark]	
		[many	
	$t_1 =$	S	
02.3	Calculate the angular speed of ${f X}$ as it completes its first rotation.	[2 marke]	
		[z marks]	
	angular speed =	rad s ^{-1}	

Turn over ►

Do not write outside the 0 3 . 3 The hydrogen cycle in the Sun involves three fusion reactions: $^{1}_{1}H + ^{1}_{1}H \rightarrow ^{2}_{1}H + e^{+} + v$ reaction 1 ${}^{1}_{1}\mathrm{H} + {}^{2}_{1}\mathrm{H} \rightarrow {}^{3}_{2}\mathrm{He}$ reaction 2 ${}^{3}_{2}\text{He} + {}^{3}_{2}\text{He} \rightarrow {}^{4}_{2}\text{He} + {}^{1}_{1}\text{H}$ reaction 3 The cycle produces one $\frac{4}{2}\mathrm{He}$ nucleus from four $\frac{1}{1}\mathrm{H}$ nuclei. Deduce the number of times that reactions 1 and 2 occur in each cycle. [2 marks] Reaction 1 Reaction 2

7

box

0 4	The energy sources on a small island consist of a combination of a wind farm and a pumped storage system (PSS).	Do not writ outside the box
04.1	Describe how this combination can provide a continuous supply of electrical energy. [2 marks]	
	Question 4 continues on the next page	
	Turn over ►	

04.2	The wind farm has several wind turbine generators (WTGs). One WTG has a rotor diameter of $71~{ m m}$ and an efficiency of 28% .		Do not write outside the box
	Calculate the minimum wind speed that could produce a power output of 2.3 from the WTG.	MW	
	density of air = 1.3 kg m^{-3}		
		[3 marks]	
	minimum wind speed =	$_{m} s^{-1}$	
04.3	In the PSS, water flows from an upper reservoir through a pipe to a water tur The water falls a vertical distance of $650~{ m m}$ before striking the turbine.	bine.	
	Calculate the maximum speed of the water striking the turbine.		
	Assume that there are negligible energy losses as the water flows through th	e pipe. [2 marks]	
	maximum speed of water =	$m s^{-1}$	

0 5	Uranium fuel uranium-235	rods used in a therma	I nuclear reactor conta	ain uranium-238 and	Do not write outside the box
0 5.1	Table 3 gives	s the masses of a urar	nium-238 nuclide and a	a uranium-237 nuclide.	
		Та	ble 3		
		Nuclide	Mass / u		
		$^{238}_{92}$ U	238.00037		
		²³⁷ ₉₂ U	236.99831		
	Deduce whe	ther a uranium-238 nu	cleus can decay into a	uranium-237 nucleus and a	
	neution.			[2 marks]	
0 5 2	Describe hov	v a chain reaction occu	urs in the uranium-235	fuel. [3 marks]	

0 5.3	State one substance that is used as a moderator in a thermal nuclear reactor. [1 mark]
0 5.4	The neutrons required to produce fission in many reactors are thermal neutrons. State why they are called thermal neutrons. [1 mark]
0 5.5	Explain why the kinetic energy of the neutrons needs to be reduced for the chain reaction to occur. [2 marks]
0 5.6	Neutrons lose kinetic energy by a series of collisions with nuclei of the moderator. Each neutron keeps an average of 84% of its incident kinetic energy in each collision. One neutron has an initial kinetic energy of 2.0×10^6 eV.
	Deduce the average number of collisions the neutron makes to reduce its kinetic energy to $2.5\times10^{-2}~eV.$ [2 marks]
	average number of collisions =

Turn over ►

0 5.7

Liquid sodium is used as a coolant in some types of nuclear reactor. **Table 4** gives some properties of sodium. Do not write outside the box

Table 4	
---------	--

melting temperature / °C	98
latent heat of fusion / $kJ \; kg^{-1}$	110
average specific heat capacity of solid / $kJ \; kg^{-1} \; K^{-1}$	1.2
average specific heat capacity of liquid / $kJ \; kg^{-1} \; K^{-1}$	1.3

Calculate the energy required to heat $3.3 \times 10^5 \text{ kg}$ of sodium from an initial temperature of 20 °C to a final temperature of 560 °C.

[3 marks]

energy =

J

0 5.8	During the operation of the reactor, radioactive caesium-137 is produced. The caesium-137 is removed from the reactor as waste which needs to be stored. Caesium-137 decays into stable barium-137 with the emission of beta particles and gamma radiation. The half-life of caesium-137 is 30 years. Outline the problems associated with the storage of this waste. [2 marks]	Do not write outside the box
		16
	Turn over for the next question	

Do not write 0 6 . 2 Explain, with reference to the first law of thermodynamics, why the temperature of the air increases as a result of this rapid compression. [3 marks] 0 6. 3 The pressures and temperatures of the air before and after this rapid compression are related by: $\frac{p_1}{p_2} = \left(\frac{T_1}{T_2}\right)^{3.5}$ Calculate T_2 when $T_1 = 300$ K. [3 marks] $T_2 =$ Κ Question 6 continues on the next page

outside the box

06.5	The gas from the combustion chamber drives a gas turbine that is rotating at 1.0×10^4 revolutions per minute. The turbine extracts energy from the gas at a rate of 19 MW.	Do not write outside the box
	Calculate the torque exerted by the gas on the turbine. [3 marks]	
	torque =N m	
	Question 6 continues on the next page	
	Turn over ►	

		Contine D	
Eac	h of the questions in this	section B s section is followed by t	four responses, A , B , C and D .
	For each	question select the bes	st response.
Only one a For each q	nswer per question is all uestion, completely fill in	lowed. I the circle alongside the	e appropriate answer.
CORRECT METH		METHODS 😵 💽 🙈 🔇	K
f you want	to change your answer y	/ou must cross out your	original answer as shown. 🔀
f you wish t	to return to an answer pr	reviously crossed out, ri	ng the answer you now wish to select
You may do Do not use	your working in the blan additional sheets for this	nk space around each c s working.	uestion but this will not be marked.
) 7 Ac	ontainer holds a fixed m	ass of an ideal gas at a	constant pressure.
The	e container has a piston t	that is free to move hori	
			zontally.
	container		piston
	container		zontally. piston direction of movement
	container gas		zontally. piston direction of movement
Wh	container gas du and Q stant pressure?	lead to the smallest cha	piston direction of movement ange in the volume of the gas for this
Wh	container gas du and Q stant pressure?	lead to the smallest cha	zontally. piston direction of movement ange in the volume of the gas for this [1 mark]
Wh cor	container gas dU and Q stant pressure? $\Delta U / J$	lead to the smallest character Q / J	zontally. piston direction of movement ange in the volume of the gas for this [1 mark]
Wh cor	container gas du and Q ich values of ΔU and Q istant pressure? $\Delta U / J$ -45	lead to the smallest chance Q / J -60	piston direction of movement ange in the volume of the gas for this [1 mark]
Wh cor E	container gas ich values of ΔU and Q istant pressure? $\Delta U / J$ -45 -15	lead to the smallest channel Q / J -60 +60	<pre>izontally. piston direction of movement ange in the volume of the gas for this [1 mark] [1 mark] [] </pre>
Wh cor	ich values of ΔU and Q stant pressure? $\Delta U / J$ -45 -15	lead to the smallest chance Q / J -60 +60	izontally. piston direction of movement ange in the volume of the gas for this [1 mark]
Wh cor E	ich values of ΔU and Q istant pressure? $\Delta U / J$ -45 -15 $+30$	lead to the smallest chance Q / J -60 +60 -45	izontally. piston direction of movement ange in the volume of the gas for this [1 mark] [1 mark] [2 mark] [3 mark] [4 mark] [4 mark] [5 mark] [5 mark] [6 mark] [6 mark] [6 mark] [6 mark] [6 mark] [7 mark] [7 mark] [8 mark] [9

[1 mark]

[1 mark]

The table shows information about four materials.

	Material	Area / m ²	Thickness / mm	U-value / W m ⁻² K ⁻¹
	Α	1.0	40	3.0
	В	2.0	10	1.0
	С	3.0	20	2.0
	D	3.0	30	4.0
	The rate of energ	y transfer through ea	ach material is the sa temperature differenc	me. ce across its surfaces? [1
	A 🖸			
	B			
	C \bigcirc			
	D 💿			
09	Which of these ar observation?	ises from a theoretic	al derivation rather t	nan from an experimental [1
	A Boyle's law	0		
	B Charles's law	0		
	C Brownian motion	on 🗢		
	D the ideal gas e	quation \bigcirc		

0 8

Turn over ►

1 3	An insulated beaker of negligible heat capacity contains a liquid at a temperature of $10 ^{\circ}$ C. The mass of the liquid is 0.30kg . A metal block of mass 0.10kg is at a temperature of $90 ^{\circ}$ C. The metal is placed into the liquid. The metal and liquid reach thermal equilibrium at a temperature of $28 ^{\circ}$ C. The specific heat capacity of the liquid is $1700 \text{J kg}^{-1} \text{K}^{-1}$. What is the specific heat capacity of the metal? [1 mark]			Ire of 10 °C.	ot write ide the iox
				[1 mark]	
	A 160	$0 J kg^{-1} K^{-1}$			
	B 130	$00 \text{ J kg}^{-1} \text{ K}^{-1}$			
	C 150	$00 \text{ J kg}^{-1} \text{ K}^{-1}$			
	D 180	$00 \text{ J kg}^{-1} \text{ K}^{-1}$			
1 4	Which pair of changes to the conditions of an ideal gas will always increase the internal			e internal	
	energy of a fixed mass of the gas? [1 mark]			[1 mark]	
		Gas pressure	Gas volume		
	Α	increase	increase	0	
	в	increase	decrease	0	
	с	decrease	increase	0	
	D	decrease	decrease	0	
		Turn over for the	next question		

Turn over 🕨

Turn over for the next question

Turn over ►

Two discs X and Y rotate freely on the same axle at different angular speeds. Initially, X rotates clockwise at 48 rad s^{-1} and Y rotates anticlockwise at 22 rad s^{-1} . 2 1 **X** falls onto **Y** and the two discs rotate together with the same angular speed. The moment of inertia of X is $1.2~kg~m^2.$ The moment of inertia of Y is $1.6~kg~m^2.$ axle axle Х

χ·

final

What is the final angular speed and direction of rotation of the two discs?

Υ

initial

[1 mark]

	Final angular speed / $ m rad~s^{-1}$	Direction of rotation	
Α	8	clockwise	0
В	22	clockwise	0
с	33	anticlockwise	0
D	93	anticlockwise	0

END OF QUESTIONS

Do not write outside the

box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

