

# INTERNATIONAL AS PHYSICS PH02

Unit 2 Electricity, waves and particles

Mark scheme

June 2023

Version: 1.0 Final



Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

#### Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

# Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

## Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

### Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

| Question | Answers                                                     | Additional comments/Guidelines | Mark | AO      |
|----------|-------------------------------------------------------------|--------------------------------|------|---------|
| 01       | uses $E = hf$ or $2.2 \times 10^{-4}$ (J) seen $\checkmark$ |                                | 2    | 2 × AO1 |
|          | value that rounds to $1.4 \times 10^3$ (TeV) $\checkmark$   |                                |      |         |
| Total    |                                                             |                                | 2    |         |

| Question | Answers                                                                                                      | Additional comments/Guidelines                                                                                                    | Mark | АО      |
|----------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 02       | comment about circuit when switch was open ✓                                                                 | Condone 'battery' for 'cell'.                                                                                                     | 3    | 3 × AO2 |
|          |                                                                                                              | MP1 e.g. voltmeter reading is the emf <b>OR</b> the emf is 1.53 V <b>OR</b> no current present, so no lost volts/energy loss.     |      |         |
|          | comment that closing the switch produces a current in circuit/cell <b>AND</b> cell has internal resistance ✓ | MP2: Reject idea that current causes internal resistance. Reject idea that there was any current when switch is open.             |      |         |
|          | conclusion that voltmeter reading decreases with relevant reason ✓                                           | MP3: e.g. 'terminal pd/voltage' decreases; idea of 'lost volts' in cell; pd exists across internal resistance.                    |      |         |
|          |                                                                                                              | Allow explanation in terms of $\varepsilon = I(R+r)$ if terms defined. Allow explanation in terms of a potential divider circuit. |      |         |
| Total    |                                                                                                              |                                                                                                                                   | 3    |         |

| Question | Answers                                                                                                                                                   | Additional comments/Guidelines                                                                                 | Mark | AO      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|---------|
| 03       | idea that a photon transfers, or an electron receives, a discrete amount of energy <b>OR</b> idea that a photon transfers all its energy to an electron ✓ | MP1: Allow 'an electron absorbs a photon'.                                                                     | 3    | 3 × AO1 |
|          | maximum kinetic energy (of electron) equals photon energy minus work function ✓                                                                           | MP2: Allow idea that electrons with max KE are emitted from surface of metal.                                  |      |         |
|          | Tillius work fullction v                                                                                                                                  | MP2: Allow use of ' $hf-\phi$ ' if at least one term is defined.                                               |      |         |
|          | idea that some electrons have lower KE because: more energy (than work function) is needed to be emitted                                                  | MP3: Condone idea that energy to remove electron varies with depth. Reject idea that the work function varies. |      |         |
|          | OR                                                                                                                                                        |                                                                                                                |      |         |
|          | (extra) energy loss occurs during emission ✓                                                                                                              |                                                                                                                |      |         |
| Total    |                                                                                                                                                           |                                                                                                                | 3    |         |

| Question | Answers                                                              | Additional comments/Guidelines                                                     | Mark | АО      |
|----------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|------|---------|
| 04.1     | Max 2 from: ✓✓                                                       | Do not allow suggestion of modal dispersion. Condone 'frequency' for 'wavelength'. | 2    | 2 × AO1 |
|          | different wavelengths take different times to travel (through core)  | 'Spread out more' is insufficient for 'different times'.                           |      |         |
|          | (because) different wavelengths travel at different speeds (in core) |                                                                                    |      |         |
|          | (because) refractive index of fibre varies with wavelength           | Ignore any specific correlation between wavelength and wave speed.                 |      |         |

| Question               | Answers                                                                                                                                    | Additional comments/Guidelines                                                                                                                                                                                                                                                     | Mark | AO      |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 04.2                   | idea that increased length of fibre leads to: increased pulse broadening  OR reduced intensity / amplitude ✓                               | MP1: Condone 'dispersion' will increase with length. Reference to dispersion can be for material or modal.  MP1: Allow a specific reason for reduced intensity e.g. absorption / scattering / refraction (out of core) / attenuation. Allow 'weaker signal' for reduced intensity. | 2    | 2 × AO2 |
| having distinct time g | idea that (max) transmission rate depends on:  having distinct time gaps between (adjacent) pulses  OR pulses having a minimum intensity ✓ | For full credit their MP1 and MP2 must correlate.                                                                                                                                                                                                                                  |      |         |
| Total                  |                                                                                                                                            |                                                                                                                                                                                                                                                                                    | 4    |         |

| Question | Answers                         | Additional comments/Guidelines | Mark | AO  |
|----------|---------------------------------|--------------------------------|------|-----|
| 05.1     | One from: ✓                     | Accept 'A scans'.              | 1    | AO1 |
|          | lithotripsy / breaking stones   |                                |      |     |
|          | cleaning (surgical) equipment   |                                |      |     |
|          | cleaning teeth / plaque removal |                                |      |     |
|          | monitor blood speed/flow        |                                |      |     |
|          | deep-tissue heating             |                                |      |     |
|          | ultrasonic scalpel              |                                |      |     |

| Question | Answers                                                                                                     | Additional comments/Guidelines                                                                                                                                                                    | Mark | АО      |
|----------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 05.2     | uses $c = f \lambda$ with 3.5 (km s <sup>-1</sup> ) $\checkmark$<br>1.1 × 10 <sup>-3</sup> (m) $\checkmark$ | For MP1 condone POT errors. Allow 1 mark max for correct $\lambda$ of another tissue: fat $4.4 \times 10^{-4}$ m; muscle $5.0 \times 10^{-4}$ m. Calculator value is $1.09375 \times 10^{-3}$ (m) | 2    | 2 × AO2 |
| Total    |                                                                                                             |                                                                                                                                                                                                   | 3    |         |

| Question | Answers                | Additional comments/Guidelines                                                            | Mark | AO  |
|----------|------------------------|-------------------------------------------------------------------------------------------|------|-----|
| 06.1     | mass per unit length ✓ | Condone 'linear density'.  Accept 'mass of wire/string divided by length of wire/string'. | 1    | AO1 |

| Question |                                                                                                                                                                                           | Answers                                                                           | Additional comments/Guidelines                                                                                                                                | Mark | AO      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 06.2     | Max 4:                                                                                                                                                                                    | <b>√ √ √ √</b>                                                                    | B = Basic; D = Detailed                                                                                                                                       | 4    | 4 × AO4 |
|          | Mark                                                                                                                                                                                      | Description                                                                       | (A) Determining <i>l</i> :                                                                                                                                    |      |         |
|          | 4                                                                                                                                                                                         | Detailed comments about any two areas <b>AND</b> one basic comment about any area | <ul> <li>measure with a ruler / tape (B)</li> <li>reference to distance of string between</li> </ul>                                                          |      |         |
|          | Detailed comment about any one area AND one basic comment about another area  Detailed comment about another area  Detailed comment about one area OR  Detailed comment about one area OR |                                                                                   |                                                                                                                                                               |      |         |
|          |                                                                                                                                                                                           | Detailed comment about one area <b>OR</b> basic comments about two or three areas | • change $l$ and record $f$ , or vice versa (B)                                                                                                               |      |         |
|          | 1                                                                                                                                                                                         | Basic comment about any area                                                      | <ul> <li>move vibration generator to change l (B)</li> <li>change f of vibration generator (B)</li> <li>change f by adjusting signal generator (D)</li> </ul> |      |         |
|          | 0                                                                                                                                                                                         | No relevant content                                                               |                                                                                                                                                               |      |         |
|          | Treat a                                                                                                                                                                                   | nnotations (on Figure 2) as Basic level only.                                     | <ul> <li>description of first harmonic e.g. max<br/>amplitude/antinode in middle of string or<br/>one loop seen (D)</li> </ul>                                |      |         |
|          |                                                                                                                                                                                           |                                                                                   | (C) Control variables:                                                                                                                                        |      |         |
|          |                                                                                                                                                                                           |                                                                                   | <ul> <li>same string / μ (B)</li> <li>same tension (B)</li> </ul>                                                                                             |      |         |
|          |                                                                                                                                                                                           |                                                                                   | • same mass (B)                                                                                                                                               |      |         |
|          |                                                                                                                                                                                           |                                                                                   | <ul> <li>same tension by using same mass (D)</li> </ul>                                                                                                       |      |         |

| Question | Answers                    | Additional comments/Guidelines | Mark | АО  |
|----------|----------------------------|--------------------------------|------|-----|
| 06.3     | second / 2 <sup>nd</sup> ✓ |                                | 1    | AO2 |

| Question | Answers                                                                                                                                  | Additional comments/Guidelines                                    | Mark | AO      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|---------|
| 06.4     | (reasonably) sinusoidal line drawn with:  correct amplitude (~ 1 box) for two peaks ✓  correct wavelength and correct phase difference ✓ | MP2: Trough and crest should fall within grey shaded areas shown. | 2    | 2 × AO3 |
| Total    |                                                                                                                                          |                                                                   | 8    |         |

| Question | Answers                                                                                  | Additional comments/Guidelines                                   | Mark | AO  |
|----------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|------|-----|
| 07.1     | combines $W = VQ$ and $E_{\rm k} = \frac{1}{2} m v^2$ to give final formula $\checkmark$ | Expect to see $Ve = \frac{1}{2}mv^2$ AND $v^2 = \frac{2Ve}{m_e}$ | 1    | AO2 |

| Question | Answers                                                                                                                            | Additional comments/Guidelines                                                                    | Mark | АО      |
|----------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|---------|
| 07.2     | $v = \sqrt{\frac{2 \times 5.0 \times 10^4 \times 1.60 \times 10^{-19}}{9.11 \times 10^{-31}}} \text{ seen } \checkmark$            | Need $v$ or $\lambda$ as subject at least once.<br>Condone use of $m_e$ and $e$ in substitutions. | 2    | 2 × AO2 |
|          |                                                                                                                                    | Allow MP1 for showing that $\lambda = \frac{h}{\sqrt{2m_eVe}}$                                    |      |         |
|          |                                                                                                                                    | $\nu$ must be correct if used in de Broglie equation. Expect $1.325\times 10^8~m~s^{-1}.$         |      |         |
|          | substitutes into an equation for wavelength and gives a value to at least 3 sf that rounds to $5.5 \times 10^{-12}$ m $\checkmark$ | Reject $5.6 \times 10^{-12}$ m from using $v$ to 2 sf.                                            |      |         |

| Question | Answers                                      | Additional comments/Guidelines                                                                                                                          | Mark | АО      |
|----------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 07.3     | uses $w = \frac{\lambda D}{s}$               | All 3 values need to be substituted. Allow POT error for $s$ . Only allow $\lambda$ value that rounds to $5.5\times 10^{-12}$ or $5.6\times 10^{-12}$ . | 2    | 2 × AO2 |
|          | $9.6 \times 10^{-7} \text{ (m) } \checkmark$ | Allow $9.8 \times 10^{-7}$ (m).                                                                                                                         |      |         |

| Question | Answers                                        | Additional comments/Guidelines | Mark | AO      |
|----------|------------------------------------------------|--------------------------------|------|---------|
| 07.4     | diffraction (when passing through slits) ✓     | Allow coherence.               | 2    | 2 × AO1 |
|          | superposition / interference (at the screen) ✓ |                                |      |         |

| Question | Answers                                                              | Additional comments/Guidelines | Mark | AO      |
|----------|----------------------------------------------------------------------|--------------------------------|------|---------|
| 07.5     | fringe spacing decreases because (de Broglie) wavelength decreases ✓ |                                | 2    | 2 × AO1 |
|          | (because the) momentum or speed increases ✓                          |                                |      |         |

| Question | Answers                                                                                                                                                 | Additional comments/Guidelines                                                                           | Mark | AO      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|---------|
| 07.6     | bright fringes / maxima arise from waves arriving in-phase or with $n\lambda$ path difference $\checkmark$                                              | Allow an equivalent explanation of dark fringes / minima.  Do not accept 'out of phase' for 'antiphase'. | 3    | 3 × AO2 |
|          | Max 2 from: ✓ ✓  diffraction occurs (at each slit) superposition occurs (at screen) (leading to) constructive interference AND destructive interference | Do not allow 'superimposition'.                                                                          |      |         |
| Total    |                                                                                                                                                         |                                                                                                          | 12   |         |

| Question | Answers                                                                                | Additional comments/Guidelines                                                                                                                                                                                                           | Mark | AO      |
|----------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 08.1     | states Ohm's law as current is directly proportional to pd (at constant temperature) ✓ | MP2 is dependent on MP1. Penalise contradictions. Allow reasoned arguments about not knowing if the temperature is constant.                                                                                                             | 2    | 1 × AO1 |
|          |                                                                                        | MP1: Condone 'proportional' for 'directly proportional'. Allow comment that a graph showing Ohm's Law is linear / has constant gradient <b>AND</b> passes through origin. No credit for idea that gradient is related to the resistance. |      |         |
|          | yes, component obeys law up to:                                                        | For MP2 allow 1 sf '1 V'.                                                                                                                                                                                                                |      |         |
|          | allow 60 to 63 mA <b>OR</b> 1.0 to 1.2 V                                               |                                                                                                                                                                                                                                          |      |         |
|          | OR                                                                                     |                                                                                                                                                                                                                                          |      |         |
|          | no, component does not obey law above:                                                 |                                                                                                                                                                                                                                          |      |         |
|          | allow 60 to 63 mA <b>OR</b> 1.0 to 1.2 V ✓                                             |                                                                                                                                                                                                                                          |      |         |

| Question | Answers                                                                                                      | Additional comments/Guidelines                                                                             | Mark | AO      |
|----------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------|---------|
| 08.2     | (as temperature increases) resistance of thermistor decreases ✓                                              | Allow MP2 for stating that current increases and for using $V = IR$ to show pd across fixed $R$ increases. | 2    | 2 × AO3 |
|          | idea that the share of pd across thermistor decreases, so pd across fixed $\it R$ increases $\it \checkmark$ | MP2: Reject 'pd across thermistor decreases, so pd across fixed $R$ increases'.                            |      |         |

| Question | Answers                                                                                                                                                   | Additional comments/Guidelines                                                                                                                                                                                                                                                                                                    | Mark | АО      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 08.3     | correct use of 1.3 or 8.7 V in a potential divider equation <b>OR</b> uses $8.7 \text{ V}$ in $V = IR$ to calculate current $(1.4 \text{ mA}) \checkmark$ | MP1: Allow 3 sf read-offs if they round to 1.3 or 8.7. Allow 6.1 for $R$ in potential divider equation. Allow POT error for $R$ in $V = IR$ .  MP1: Expect to see: $R = \frac{1.3}{8.7} \times 6100$ <b>OR</b> $8.7 = \frac{6100}{6100+R} \times 10$ <b>OR</b> $1.3 = \frac{R}{6100+R} \times 10$ <b>OR</b> $8.7 = I \times 6100$ | 2    | 2 × AO3 |
|          | correct working to give 910 ( $\Omega$ ) $\checkmark$                                                                                                     | MP2: Answer must have a subject. Calculator value is $911.494~(\Omega)$ . Using $1.43~\text{mA}$ gives $909.0909~(\Omega)$ . Allow $930~(\Omega)$ if rounded value of $1.4~\text{mA}$ used. Calculator value is $928.5714~(\Omega)$ .                                                                                             |      |         |

| Question | Answers                                                                                                                                                                                                                                                                                                                              | Additional comments/Guidelines                                                                                                                                                                                                                                                                                           | Mark | АО      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 08.4     | uses $V = IR$ to get total resistance (6850 $\Omega$ ) and subtracts 6100 $\Omega$ <b>OR</b> uses potential divider formula with 8.9 V <sub>1a</sub> $\checkmark$ use of parallel resistor formula with $R_{\rm T}$ in correct place <sub>2a</sub> $\checkmark$ answer in range 3900 to 4600 ( $\Omega$ ) <sub>3a</sub> $\checkmark$ | $_{1a}$ ✓ is for getting parallel resistance (expect 750 Ω). May see $R = \frac{1.1}{8.9} \times 6100$ $_{2a}$ ✓ is for using parallel resistor formula. Expect to see $\frac{1}{750} = \frac{1}{900} + \frac{1}{R}$ In $_{2a}$ ✓ allow ecf for $R_T$ from MP1 but not from <b>08.3</b> unless the value rounds to $900$ | 3    | 3 × AO3 |
|          | OR                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                          |      |         |
|          | correct use of $V = IR$ to get current in $I_{T 1b}$                                                                                                                                                                                                                                                                                 | <sub>1b</sub> ✓ is for getting current in thermistor ( $I_T$ ).<br>Expect ~1.2 mA for $I_T$ (using $V_T$ =1.1 V and $R_T$ = 900 $\Omega$ )                                                                                                                                                                               |      |         |
|          | subtracts their $I_{\rm T}$ from 1.46 mA to get $I_{\rm S}$ and uses $I_{\rm S}$ in $V=IR_{2\rm b}$                                                                                                                                                                                                                                  | $_{2b}\checkmark$ is for getting current in <b>S</b> ( $I_{s}$ ) and using in $V=IR$ . For $_{2b}\checkmark$ expect $I_{s}=0.25$ mA and 1.1                                                                                                                                                                              |      |         |
|          | answer in range 3900 to 4600 ( $\Omega$ ) $_{3b}\checkmark$                                                                                                                                                                                                                                                                          | V for $V_{\mathbf{S}}$ . Allow an ecf for $V_{\mathbf{S}}$ .                                                                                                                                                                                                                                                             |      |         |

| Question | Answers                                                                                | Additional comments/Guidelines        | Mark | AO  |
|----------|----------------------------------------------------------------------------------------|---------------------------------------|------|-----|
| 08.5     | idea that more limited range of pd leads to lower resolution $(V \ \text{per degree})$ | Condone 'sensitivity' for resolution. | 1    | AO4 |
| Total    |                                                                                        |                                       | 10   |     |

| Question | Answers                                                                                                | Additional comments/Guidelines                                                                          | Mark | AO      |
|----------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|---------|
| 09.1     | (radio) waves are (vertically) polarised, or description of oscillations occurring only in one plane ✓ | MP1 is for a relevant comment about polarisation.                                                       | 2    | 1 × AO3 |
|          | idea that maximum signal received is when receiving                                                    | MP2 is for a comment about signal strength and alignment. Allow 'orientation' for 'alignment'.          |      | 1 × AO2 |
|          | aerial is aligned (parallel) to transmitting aerial ✓                                                  | For MP2, condone idea that signal strength would be zero when receiving aerial is horizontally aligned. |      |         |
| Question | Answers                                                                                                | Additional comments/Guidelines                                                                          | Mark | AO      |
|          |                                                                                                        |                                                                                                         |      |         |
| 09.2     | reduction of amplitude of oscillations/vibrations                                                      | Condone 'dissipative force'.                                                                            | 1    | AO1     |
|          | OR dissipation of energy (in oscillating system) ✓                                                     | Allow 'reduction of energy from an oscillating system'.                                                 |      |         |
|          |                                                                                                        |                                                                                                         |      |         |
| Question | Answers                                                                                                | Additional comments/Guidelines                                                                          | Mark | AO      |

| Question | Answers                                                                                                                                               | Additional comments/Guidelines                                                                                                                                                                                                                                                                               | Mark | AO      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 09.3     | damper needs to be at an antinode (nearest the clamp) ✓ wavelengths of highest frequencies will have shortest spacing between antinodes (and nodes) ✓ | Allow 'damper shouldn't be at a node'. Allow 'an antinode occurs at $d$ from clamp'. Allow 'maximum amplitude' for 'antinode'. Allow two marks for 'first antinode occurs at a point $d$ from clamp' If no other mark, allow 1 mark for statement that highest frequency corresponds to shortest wavelength. | 2    | 2 × AO3 |
| Total    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              | 5    |         |

| Question | Answers                                                                                         | Additional comments/Guidelines | Mark | АО  |
|----------|-------------------------------------------------------------------------------------------------|--------------------------------|------|-----|
| 10.1     | idea that there is $0.5\ mm$ uncertainty in the readings at both ends of the ruler $\checkmark$ |                                | 1    | AO2 |

| Question | Answers                                                         | Additional comments/Guidelines                | Mark | AO  |
|----------|-----------------------------------------------------------------|-----------------------------------------------|------|-----|
| 10.2     | $\frac{0.1}{12.8} \times 100 = 0.78\% \text{ seen } \checkmark$ | Allow $\frac{0.01}{1.28} \times 100 = 0.78\%$ | 1    | AO1 |
|          | 12.8                                                            | Calculator value is 0.78125%                  |      |     |

| Question | Answers                                                         | Additional comments/Guidelines | Mark | AO      |
|----------|-----------------------------------------------------------------|--------------------------------|------|---------|
| 10.3     | $T=2\pi\sqrt{\frac{l}{g}}\mathrm{used}\checkmark$               |                                | 2    | 2 × AO2 |
|          | some working to give $9.6 \text{ (m s}^{-2}\text{)} \checkmark$ | Answer to 2 sf only.           |      |         |

| Question | Answers                                                                                                                 | Additional comments/Guidelines                                                                                       | Mark | АО      |
|----------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------|---------|
| 10.4     | doubles answer in <b>10.2 OR</b> $\frac{1}{400}$ or $0.0025$ or $0.25\%$ seen $\checkmark$ 1.8 or 1.9 or 2 $\checkmark$ | Their value from <b>10.2</b> must round to 0.8.  MP2: Accept 2 sf answers of '1.8' and '1.9', or 1 sf answer of '2'. | 2    | 2 × AO2 |

| Question | Answers                                                                                                                                                                                                                                                                                                | Additional comments/Guidelines                             | Mark | AO      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|---------|
| 10.5     | Any 2 from: $\checkmark$ $\checkmark$ increase length of pendulum / string; 'increase $L$ ' record greater number (than 10) of oscillations repeat timings for $T_{10}$ use of a fiducial mark at centre of oscillation repeat for different values of $L$ <b>AND</b> plot appropriate graph (2 marks) | Reject 'record more times'. Reject bland 'repeat timings'. | 2    | 2 × AO2 |
| Total    |                                                                                                                                                                                                                                                                                                        |                                                            | 8    | ]       |

| Question | Answers                                                                  | Additional comments/Guidelines                                                                                                                                                                                                                                                                             | Mark | АО  |
|----------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 11.1     | uses $\sin \theta_c = \frac{n_2}{n_1}$ to give $\theta_c = 42.2(^\circ)$ | Allow $\sin\theta_{\rm c}=\frac{1}{1.49}{\rm OR}\;\theta_{\rm c}=\arcsin\left(\frac{1}{1.49}\right){\rm OR}$ $\theta_{\rm c}=\sin^{-1}\left(\frac{1}{1.49}\right)$ Must have $\theta_{\rm c}$ or 'critical angle' as subject. Allow $\theta$ for $\theta_{\rm c}$ . Calculator value is $42.155^{\circ}$ . | 1    | AO1 |

| Question | Answers                                                                                                                                             | Additional comments/Guidelines                                                                                                                                                               | Mark | АО      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| 11.2     | (total internal) reflection (occurs at <b>P</b> ) because angle of incidence is greater than critical angle ✓                                       | Allow 45° for 'angle of incidence' and 42° for 'critical angle'.                                                                                                                             | 2    | 2 × AO3 |
|          | travels horizontally right because angle of incidence is 45° so ray reflects at 45° or reflects through 90°                                         | If no other mark, allow max 1 mark for a description of the path e.g. 'ray reflects at P and travels horizontally to leave at right-hand side' <b>OR</b> for drawing a fully correct path on |      |         |
|          | OR                                                                                                                                                  | Figure 16.                                                                                                                                                                                   |      |         |
|          | leaves at right hand side of fibre because ray is:                                                                                                  |                                                                                                                                                                                              |      |         |
|          | incident at normal / perpendicular to surface / at an angle of incidence of $0^\circ$ / at angle of incidence less than critical angle $\checkmark$ |                                                                                                                                                                                              |      |         |

| Question | Answers                                                                       | Additional comments/Guidelines | Mark | AO      |
|----------|-------------------------------------------------------------------------------|--------------------------------|------|---------|
| 11.3     | uses Snell's law: $1.49\sin\theta_1 = 1.39\sin\theta_2$ ✓                     |                                | 2    | 2 × AO1 |
|          | to give a value for $\theta_2$ to at least 2 sf and that rounds to $49^\circ$ | Calculator value is 49.2862°.  |      |         |

✓

| Question | Answers                                                                   | Additional comments/Guidelines                                                                  | Mark | АО  |
|----------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|-----|
| 11.4     | refracted ray shown as straight line drawn at $50^\circ$ (to normal at P) | Line should deviate to right and pass to left of the 'o' in 'optical fibre' label in Figure 17. | 1    | AO3 |

| Question | Answers                                                                                                  | Additional comments/Guidelines                               | Mark | АО      |
|----------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|---------|
| 11.5     | intensity increases because (refracted) light re-enters the fibre when fuel is present (in the groove) ✓ | Reject 'less total internal reflection occurs'.              | 2    | 2 × AO2 |
|          | idea that overall light intensity increases as more grooves are filled ✓                                 | For MP2, accept a diagram of stepped increases in intensity. |      |         |
| Total    |                                                                                                          |                                                              | 8    |         |

| Question | Key |                                  | Answer    | AO  |
|----------|-----|----------------------------------|-----------|-----|
| 12       | D   | 3.43 V                           |           | AO3 |
| 13       | D   | 12 V                             | 4 V       | AO3 |
| 14       | С   | $\frac{2E}{R}$                   |           | AO3 |
| 15       | В   | increasing value                 | no change | AO3 |
| 16       | С   | $2.5 \times 10^{-18} \mathrm{J}$ |           | AO3 |
| 17       | В   | $E_{\mathbf{k}}$                 |           | AO2 |
| 18       | В   | $\frac{d}{\sqrt{2}}$             |           | AO2 |
| 19       | D   | $20 \text{ cm s}^{-1}$           |           | AO3 |

| 20 | A | downwards | downwards | AO3 |
|----|---|-----------|-----------|-----|
| 21 | С | 41.6°     |           | AO1 |
| 22 | D | 90 cm     |           | AO2 |
| 23 | A | decreases | decreases | AO1 |
| 24 | С | 1.6 rad   |           | AO1 |
| 25 | D |           |           | AO1 |

Total = 14 marks