

INTERNATIONAL QUALIFICATIONS

Please write clearly in	າ block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/

INTERNATIONAL A-LEVEL PHYSICS

Unit 4 Energy and Energy resources

Tuesday 11 June 2024 07:

07:00 GMT

Time allowed: 2 hours

Materials

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

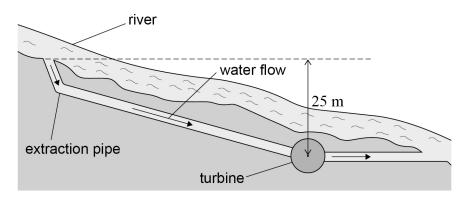
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- · All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7–21	
TOTAL	

Section A


Answer all questions in this section.

0 1

Figure 1 shows part of a small hydroelectric power (HEP) station. Some of the river water enters the extraction pipe. This water flows through a turbine before it re-enters the river.

The flow in the river can vary, depending on the weather.

Figure 1

For this HEP station:

- the water falls a vertical distance of 25 m
- the mean electrical power output is 79 kW
- the efficiency is 86%.

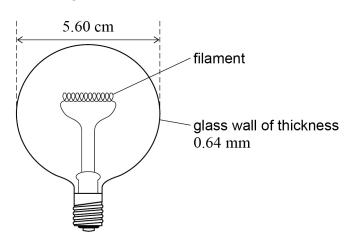
0 1 . 1	
---------	--

Calculate the mean mass of water entering the extraction pipe every second.

[3 marks]

mean mass =	kg

0 1 . 2	The HEP station has an alternating output of voltage $69~\mathrm{kV}$ rms.	
	Calculate the peak current output from the HEP station. [2 mark]	s]
	peak current =	A
	A second type of HEP station uses a dam and a reservoir to store water.	
1.3	Suggest one environmental benefit of the station shown in Figure 1 compared with	
	one that uses a dam and a reservoir. [1 mar	k]
0 1.4	State what is meant by a base-power station. Go on to discuss whether either type of HEP station can operate as a base-power	
	station. [3 mark	s]
		_
	·	


Turn over ▶

9

Figure 2 shows a filament lamp with a total power output of $60.0~\rm W$. The glass wall of the lamp has a uniform thickness of $0.64~\rm mm$.

Figure 2

Assume the lamp to be a glass sphere of external diameter 5.60 cm.

The lamp is turned on and reaches thermal equilibrium.

The temperature difference across the glass wall is now 1.2 K.

0 2 . 1

Calculate the percentage of the power output of the lamp that transfers through the glass by conduction.

thermal conductivity of glass = 1.10 $W\ m^{-1}\ K^{-1}$

[3 marks]

percentage of power output =

0 2 . 2

At equilibrium, the mean temperature of the glass wall is $131\ ^{\circ}\mathrm{C}.$

Calculate the energy needed to increase the temperature of the glass from $20\ ^{\circ}\mathrm{C}$ to $131\ ^{\circ}\mathrm{C}.$

density of glass =
$$2.5\times10^3~kg~m^{-3}$$
 specific heat capacity of glass = $0.84~kJ~kg^{-1}~K^{-1}$

[3 marks]

 $\quad \text{energy} = \qquad \qquad \underline{\qquad} \quad J$

6

Turn over for the next question

0 3	A deuterium $\binom{2}{1}H$ nucleus with an initial kinetic energy of $1.6 \times 10^{-14}\mathrm{J}$ approaches
	a second deuterium nucleus head-on. The second nucleus is initially stationary.
	When the nuclei have reached a minimum separation d , each nucleus has a kinetic energy of $4.0\times10^{-15}~\rm J.$
0 3.1	Calculate d. [3 marks]
	$d = \underline{\hspace{1cm}}$ m
0 3 . 2	On another occasion, two deuterium $\binom{2}{1}\mathrm{H}$ nuclei have initial kinetic energies
	of $1.6 \times 10^{-14} \mathrm{J}$ each.
	On this occasion, their minimum separation is different from the value of d in Question 03.1 .
	Suggest, without calculation, how this minimum separation differs from the value of d in Question 03.1 .
	[3 marks]

0 3.3	The minimum distances in Question 03.1 and Question 03.2 are both too large for the two nuclei to fuse.	
	Deuterium nuclei can fuse in a plasma in which the mean kinetic energy of nuclei is $1.6\times 10^{-14}J.$	
	Suggest why some deuterium nuclei can fuse in this plasma. [1 mark]	
	,	
0 3.4	Explain two reasons why the kinetic theory of gases can model the behaviour of an ideal gas but cannot model the behaviour of a plasma.	
	[2 marks]	
	2	
0 3 . 5	An ideal gas has particles with a mean kinetic energy of $1.6 \times 10^{-14} \ J.$	
	Calculate the absolute temperature of the gas. [2 marks]	
	absolute temperature = K	

Turn over ▶

11

The solar fusion cycle has three stages.

The equation for the reaction in the third stage of the cycle is:

$${}^3_2\mathrm{He} + {}^3_2\mathrm{He} \rightarrow {}^4_2\mathrm{He} + 2{}^1_1\mathrm{p}$$

Table 1 shows the mass of each particle involved.

Table 1

Particle	Mass / u
3 ₂ He	3.016029
⁴ не	4.002603
1 1p	1.007823

0 4. **1** Show that the energy equivalent of a mass of 1 u is approximately 930 MeV.

$$1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$$

[2 marks]

0 4 . 2 Calculate, in MeV, the energy released in one reaction in the third stage of the solar fusion cycle.

[2 marks]

$$energy = \\ MeV$$

The equation for a reaction in the second stage of the solar fusion cycle is:

$${}^2_1\mathrm{H} \,+\, {}^1_1\mathrm{p} \,\,\rightarrow\, {}^3_2\mathrm{He}\,+\,\gamma$$

Table 2 shows the binding energy of each particle involved.

Table 2

Particle	Binding energy / pJ
² ₁ H	0.35593
1 1p	0
3 ₂ He	1.23489
γ	0

0	4 .	3	Explain how the second stage contributes approximately $1.8 imes 10^{-12} \mathrm{J}$ of the ϵ	energ	y
			released in one complete cycle.		
			Support your explanation with a calculation.		
			-	_	

[2 marks]

0 4. Write the equation for the reaction in the first stage of the solar fusion cycle. [2 marks]

Question 4 continues on the next page

1 It is estimated that the Sun contains $2 \times 10^{30} \, \mathrm{kg}$ of hydrogen $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and emits energy at the rate of $4 \times 10^{26} \, \mathrm{W}$.

Each solar fusion cycle produces $4.5\times 10^{-12}\,\mathrm{J}$ of energy.

Estimate, in years, the maximum length of time for which the Sun can continue to emit energy at its current rate using only the solar fusion cycle.

mass of
$$1.0~mol$$
 of ${}^1_1H=1.0\times 10^{-3}~kg$

[4 marks]

time =	years

0 4 . 6 The fusion of two helium nuclei in the core of a star leads to the formation of heavier elements.

Explain why helium fusion requires the plasma temperature to be greater than the temperature needed for hydrogen fusion.

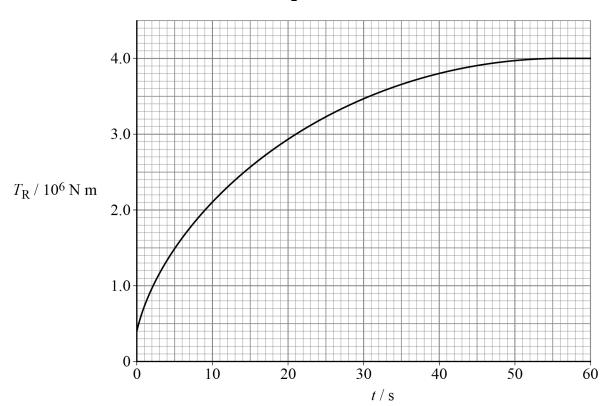
[2 marks]

14

0 5	A wind turbine has a rotor with a diameter of $135\ \mathrm{m}.$
0 5.1	Calculate, in $MW,$ the maximum power available from the air to the turbine when the wind speed is $11.4\ m\ s^{-1}.$
	density of air = 1.2 kg m^{-3} [2 marks]
	maximum power = MW
0 5.2	State two reasons why the total kinetic energy of the wind passing through the turbine is not available to the turbine. [2 marks]
	1
	2
	The rotor accelerates from rest to its maximum angular speed of $1.41\ \mathrm{rad\ s^{-1}}.$
0 5 . 3	Calculate, in revolutions per minute, the maximum frequency of rotation of the rotor. [1 mark]
	frequency = revolutions per minute

The rotor is connected to an electric generator.

The wind exerts a constant torque on the rotor.


Two types of resistive torque are exerted on the rotor:

- a constant frictional resistive torque of $4.0 \times 10^5 \ N \ m$
- a varying resistive torque exerted by the generator.

The total resistive torque is $T_{\rm R}$.

Figure 3 shows the variation of $T_{\rm R}$ with time t while the rotor is accelerating. The rotor achieves its maximum angular speed of 1.41 rad s⁻¹ at t = 55 s.

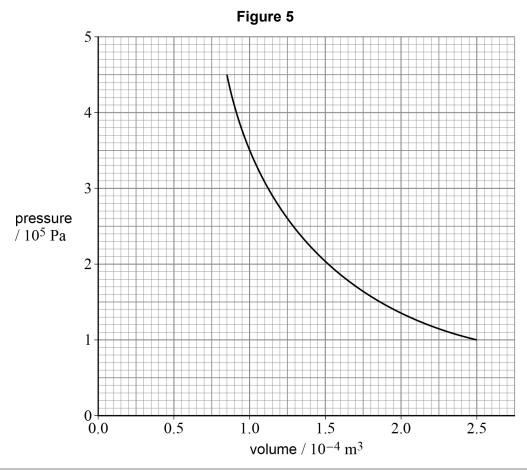
Figure 3

Calculate, in MJ, the energy that the wind transfers to the turbine between t = 55 s and t = 60 s. Use data from **Figure 3**.

[2 marks]

energy = _____ MJ

	The moment of inertia of the rotor is $7.1 \times 10^7 \ kg \ m^2$.	
0 5 . 5	Calculate the initial angular acceleration of the rotor.	[2 marks]
		[2 marks]
	angular acceleration =	rad s ⁻²
0 5 . 6	Calculate the maximum rotational kinetic energy of the rotor.	
0 5 . 6	Calculate the maximum rotational kinetic energy of the rotor.	[2 marks]
	maximum kinetic energy =	J
0 5 . 7	Explain why the angular acceleration of the rotor varies between $t=0$ and t	
		[3 marks]


Figure 4 shows a pump connected to a bicycle tyre through a connecting tube and a pressure-operated valve.

piston pressure-operated valve tyre

Initially, the piston is at the top of the cylinder as shown in **Figure 4**. The cylinder contains $2.5 \times 10^{-4} \, \mathrm{m}^3$ of air at a pressure of $1.0 \times 10^5 \, \mathrm{Pa}$ and a temperature of $17 \, ^{\circ}\mathrm{C}$. The initial pressure of the air in the tyre is $4.5 \times 10^5 \, \mathrm{Pa}$.

When the pump is operated for the first time, the piston is pushed down quickly. All the air remains in the cylinder until the cylinder pressure is 4.5×10^5 Pa. The valve opens when the cylinder pressure and the tyre pressure are equal. All the air in the cylinder then enters the tyre.

Figure 5 shows the variation of pressure with volume for the air in the cylinder.

0 6 . 1	Determine the work done in compressing the air in the cylinder to a pressure of 4.5×10^5 Pa.	
	[3 marks]	
	work done = J	
0 6.2	Calculate, in K, the temperature of the air in the cylinder when the pressure has	
	increased to 4.5×10^5 Pa. [2 marks]	
	temperature = K	
	·	
	Question 6 continues on the next page	

0 6 .	Explain, with reference to the first law of thermodynamics, why the temperature of the air in the cylinder increases when the piston is pushed down quickly. [3 marks]	
	number =	
	Calculate the number of times the pump has to be operated to inflate the tyre. [3 marks]	
	The tyre needs an additional 0.27 mol of air to be inflated to its correct pressure. The volumes of the connecting tube and the valve are negligible.	

Turn over for Section B DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

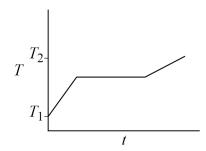
Turn over ▶

Do not write outside the box

Section B

Each of the questions in this section is followed by four responses, **A**, **B**, **C** and **D**.

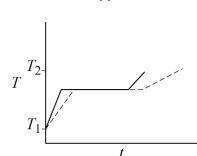
For each question select the best response.


, .	lestion is allowed. pletely fill in the circle alongside the appropriate answer.				
CORRECT METHOD	WRONG METHODS				
If you want to change your answer you must cross out your original answer as shown.					
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.					
,	You may do your working in the blank space around each question but this will not be marked. Do not use additional pages for this working.				
	has molecules that contain more than one atom. has a moment of inertia.				
The internal ener	rgy of the gas is the sum of:	[1 mark]			
	nal kinetic energies of all of the molecules.				
A the translation	iai ianolo chorgico el an el trie melecales.	0			
	nal, rotational and vibrational kinetic energies of all of the	0			
B the translation molecules.	· ·				
B the translation molecules.C the potential e molecules.D the potential e	nal, rotational and vibrational kinetic energies of all of the	0			
B the translation molecules.C the potential e molecules.D the potential e	nal, rotational and vibrational kinetic energies of all of the energies and the translational kinetic energies of all of the energies and the translational, rotational and vibrational	0			
B the translation molecules.C the potential e molecules.D the potential e	nal, rotational and vibrational kinetic energies of all of the energies and the translational kinetic energies of all of the energies and the translational, rotational and vibrational	0			

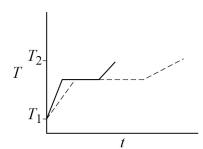
0 8 A material is initially solid at a temperature of T_1 .

> The material is heated with a constant power of *P*. It melts and the temperature of the liquid increases to T_2 .

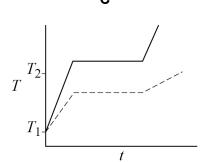
The graph shows the variation of the temperature T with time t for the material.

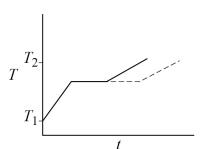

The same mass of the same material is now heated with a constant power of 2P.

Which graph shows the new variation of *T* with *t*?


The dashed lines show the shape of the original graph.

[1 mark]


Α


В

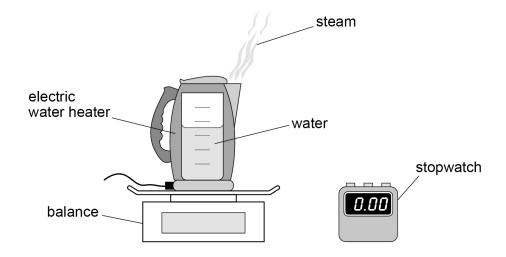
C

D

Α

В

C


D

Do not write outside the

 $oxed{0}$ $oxed{9}$ A student does an experiment to estimate the specific latent heat L of water.

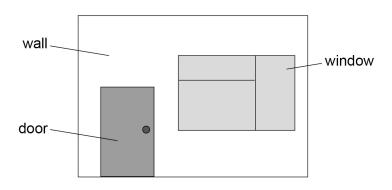
An electric water heater is placed on a balance and switched on.

The water heater uses a constant power of P.

The student waits until the water is boiling. He then starts the stopwatch and measures the time t taken for the mass of water to decrease by m.

The student estimates L using:

$$mL = Pt$$


Which error would result in an overestimate of L?

[1 mark]

A	underestimating t	0
В	overestimating m	0
С	ignoring energy losses from the water heater	0
ח	ignoring the mass of drops of water emitted with the steam	0

1 0 The front of a house has three parts: a wall, a window and a door.

The table shows the U-values and the areas for the three parts.

Part	U-value / W m ⁻² K ⁻¹	Area / m ²
wall	1.0	8.0
window	1.5	2.3
door	2.2	1.6

Which row shows the parts in order from the smallest rate of heat transfer to the largest rate of heat transfer?

[1 mark]

- A wall, window, door
- **B** wall, door, window
- **C** window, door, wall
- **D** window, wall, door

Turn over for the next question

1 1 Atmospheric pressure is 100 kPa.

Sample **X** of an ideal gas has a volume of $2.0~\rm m^3$ and an initial pressure of $100~\rm kPa$ above atmospheric pressure. It is compressed at constant temperature until its volume is $V_{\rm X}$ and its pressure is $300~\rm kPa$ above atmospheric pressure.

Sample **Y** of an ideal gas has a volume of $2.0~\rm m^3$ and an initial temperature of $177~\rm ^{\circ}C$. It is heated at constant pressure until its temperature is $354~\rm ^{\circ}C$ and its volume is $V_{\rm Y}$.

What are $V_{\rm X}$ and $V_{\rm Y}$?

[1 mark]

	$V_{\rm X}$ / ${ m m}^3$	$V_{\rm Y}$ / ${ m m}^3$	
A	1.0	2.8	0
В	1.0	4.0	0
С	0.67	2.8	0
D	0.67	4.0	0

Do not write outside the

1 2 A student uses a microscope to observe Brownian motion in some smoke.

Which statement is not true?

[1 mark]

A Randomly moving air molecules are in collision with smoke particles.

B Smoke particles are seen to move randomly.

C Air molecules are seen to move randomly.

0

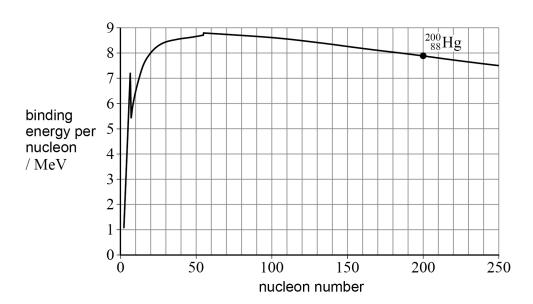
D The random motion of smoke particles demonstrates the random motion of air molecules.

0

 $oxed{1} oxed{3}$ A hydrogen $inom{1}{1} oxed{H}$ nucleus has a radius of approximately $1 \ \mathrm{fm}$.

Which is the best estimate of the density of a helium-4 ${4 \choose 2} He \Big)$ nucleus?

[1 mark]

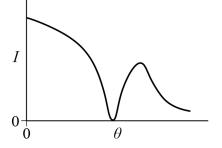

A
$$2 \times 10^{17} \text{ kg m}^{-3}$$

B
$$4 \times 10^{17} \text{ kg m}^{-3}$$

C
$$1 \times 10^{18} \text{ kg m}^{-3}$$

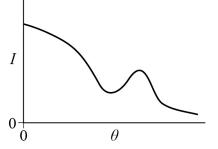
D
$$2 \times 10^{18} \text{ kg m}^{-3}$$

Turn over for the next question

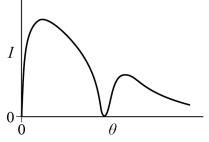

What is the best estimate of the release of energy from the fission of a $^{200}_{88}\mathrm{Hg}\,$ nucleus?

[1 mark]

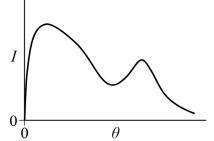
- **A** 0.7 MeV
- B 8 MeV
- **C** 62 MeV
- **D** 140 MeV


[1 mark]

Α


0

В


0

С

0

D

0

Turn over for the next question

1	6
	O

Neutron absorption cross-section σ is measured in cm². Nuclei with a large value of σ are more likely to absorb neutrons.

The table gives nucleon numbers and approximate values of σ for four isotopes.

Which isotope would be most suitable as a moderator in a thermal fission reactor?

[1 mark]

	Nucleon number	σ / cm ²	
A	6	1000	0
В	7	0.0005	0
С	181	0.0005	0
D	177	1000	0

1 7 Used fuel rods from a nuclear reactor are stored in water for a long time. The water contains dissolved boron.

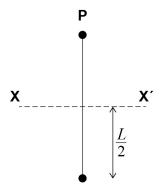
Possible reasons for this type of storage are:

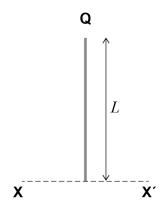
- 1. to prevent overheating due to radioactive decay of nuclei in the used fuel
- 2. to shield against radiation from radioactive materials in the used fuel
- **3.** to prevent the possibility of a chain reaction occurring in the remaining uranium in the used fuel.

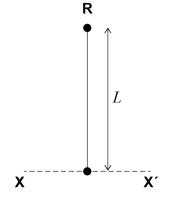
Which of these reasons are correct?

[1 mark]

- A 1 and 2 only
- B 1 and 3 only
- C 2 and 3 only
- **D** 1 and 2 and 3




 ${\bf P},\,{\bf Q}$ and ${\bf R}$ are objects with the same mass m and the same length L.


P and **R** each consist of a light rod with a point mass of mass $\frac{m}{2}$ at each end.

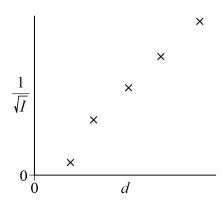
Q is a uniform rod of mass m. **Q** has a moment of inertia of $\frac{1}{3}mL^2$.

X-X' is the axis of rotation for each object.

Which shows the objects in order of increasing moment of inertia?

[1 mark]

- **A P**, **Q**, **R**
- B P, R, Q
- **C R**, **P**, **Q**
- D R, Q, P


Turn over for the next question

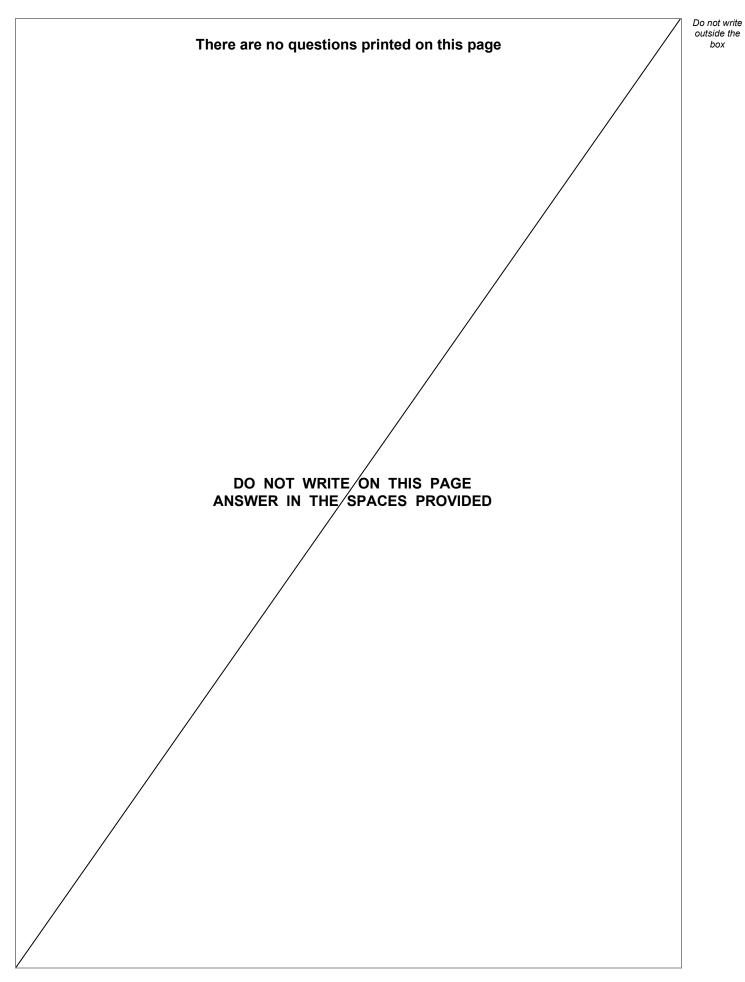
1 9		an initial angular velocity of $10\ rad\ s^{-1}.$ xperiences an angular acceleration of $-2.0\ rad\ s^{-2}$ until its angular velocity 1 .	′
	How many re	evolutions does the wheel make during this change of angular velocity?	nark]
	A 12	0	
	B 20	0	
	C 75	0	
	D 125		
2 0	electrical pov The island ne	and has renewable sources that generate between $2300~\mathrm{kW}$ and $2900~\mathrm{kW}$ wer. eeds a continuous power supply of $2500~\mathrm{kW}$. Iso has a pumped storage system that stores an energy of $60~\mathrm{MW}~\mathrm{h}$.	√ of
	The output or minimum val	f the renewable resources falls to its minimum value and remains at this ue.	
		ble sources together with the pumped storage system can only supply the ds for a time $\it t$.	
	What is <i>t</i> ?	[1 m	nark]
	A 300 h	0	
	B 150 h	0	
	C 30 h	0	
	D 15 h	0	

2 1 A student measures how light intensity *I* varies with distance *d* from a filament lamp.

The axes show the student's plot of $\frac{1}{\sqrt{I}}$ against d.

The points are not all on a straight line through the origin.

What could be a reason for this?


[1 mark]

- A The lamp is not a point source of monochromatic light.
- **B** A systematic error has occurred in the measurement of d.
- **C** An additional light source was present for part of the time.
- **D** White light does not obey the inverse-square law.

15

END OF QUESTIONS

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

