OXFORDAQA

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL A-LEVEL PHYSICS

PH04

Unit 4 Energy and Energy resources

Mark scheme

January 2025

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from www.oxfordaqa.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Question	Answers	Additional comments/Guidelines	Mark	AO
01.1	Graph showing central maximum, non-zero first minimum and further reduction to a non-zero level. ✓	$0 \frac{1}{0}$ Accept the correct presence of further minima.	1	AO1

Question	Answers	Additional comments/Guidelines	Mark	AO
01.2	Uses $\lambda = \frac{h}{p}$ to attempt to find the de Broglie wavelength of		3	1 × AO1
	the electrons. \checkmark			2 × AO2
	The idea that, (for diffraction,) the (de Broglie) wavelength should be comparable to the size of the nucleus. \checkmark	Condone – they are about the same size so suitable		
	Gets an answer of 3.0×10^{-15} (m) \checkmark	Max 2 if no indication about whether it is or is not suitable.		

Question	Answers	Additional comments/Guidelines	Mark	AO
01.3	The idea that Pb-208 has a greater/different nuclear diameter than Pb-204 (as $R = R_0 A^{\frac{1}{3}}$) (and that since the technique actually measures diameter), the measured value will be greater/different for Pb-208 than for Pb-204 \checkmark	Accept statement that difference will be very small because not much difference in nuclear diameter.	1	AO2

Question	Answers	Additional comments/Guidelines	Mark	AO
01.4	Any TWO from: 🗸		3	2 × AO1
	Converts alpha particle energy to J	Expect $1.344 \times 10^{-12} \text{ J}$		1 × AO2
	$E = rac{Q_1 Q_2}{4\pi\epsilon_0 r}$ seen			
	Selects $2\times 1.6\times 10^{-19}$ and $82\times 1.6\times 10^{-19}$ as Q_1 and Q_2			
	Then: answer that rounds to 2.8×10^{-14} (m) \checkmark			

Question	Answers	Additional comments/Guidelines	Mark	AO
01.5	Idea that the distance of closest approach is the same because it depends on the proton/charge number (and not the nucleon number). ✓		1	AO2

Total		9
-------	--	---

Question	Answers	Additional comments/Guidelines	Mark	AO
02.1	The idea that molecules/particles collides with the walls of the container and experience a change in momentum when they do. \checkmark	Condone gas collide with wall	4	2 × AO1 2 × AO2
	The walls exert a force equal to the rate of change of momentum on the molecules. \checkmark	Accept $F = \frac{mv - mu}{t}$ or equivalent for mp2		
	The molecules exert an equal and opposite force on the walls and reference to Newton 3. \checkmark			
	Relates pressure to force per unit area. \checkmark			

Question	Answers	Additional comments/Guidelines	Mark	AO
02.2	Attempts use of $\frac{1}{2}mc_{rms}^2 = \frac{3}{2}kT$ (with <i>T</i> the same for both gases). OR Recognises that (mean) molecular energy is the same for both (as they have the same temperature). \checkmark	Allow valid use of any equation e.g. $pV = \frac{1}{3}Nm(c_{rms})^2$ that leads to equating ratio of rms speeds to a ratio of masses.	3	1 × AO1 2 × AO2
	Attempts to find the ratio of $c_{\rm Ar}$ to $c_{\rm Xe}$ \checkmark Manipulates to get 1.8 \checkmark	Expect to see $\frac{c_{\text{Ar}}^2}{c_{\text{Xe}}^2} = \frac{0.132}{0.040} = 3.3$ calculator value 1.817		

Question	Answers	Additional comments/Guidelines	Mark	AO
02.3	Uses $P = \frac{NkT}{V}$ OR $P = \frac{nRT}{V}$ OR $p = \frac{2NE_K}{3V}$ (from $pV = \frac{1}{3}Nm(c_{rms})^2$ and $E_K = \frac{3}{2}kT$)	Allow attempts to calculate P in terms of N and V , substituting for k (or R) and T for MP1. They can then access MP2.	2	1 × AO2 1 × AO4
	OR use of $pV = \frac{1}{3}Nm(c_{\rm rms})^2$ with their answer to 02.2 \checkmark States that both contribute the same pressure as <i>N</i> , (<i>k</i>), <i>T</i> and <i>V</i> are the same for both (or <i>n</i> , (<i>R</i>), <i>T</i> and <i>V</i>). \checkmark	Alternatives for 1 mark max Idea that xenon has more momentum change per collision but argon has more collisions per second. ✓ OR		
		Accept calculation of both pressures using half of the total volume for each. \checkmark		

Total			9
-------	--	--	---

Question		Answers		Additional comments/Guidelines	Mark	AO
03.1	Respo	uestion is marked using Levels of nse. Refer to the Mark Scheme tions for Examiners for guidance.		Nuclear changes In fusion:	6	2 × AO1 2 × AO2
	Mark 6 5	Criteria All three areas covered in some detail. 6 marks can be awarded even if there is an error and/or parts of one aspect missing. All three areas covered, at least two in detail. Whilst there will be gaps, there should only be an occasional error.		2 small nuclei (LHS of graph) combine (to make a larger nucleus). In fission: Splitting of a large nucleus (RHS of graph) to form 2 smaller nuclei. How each process can begin Fusion – High temperature/high KE/high pressure so that nuclei get close enough to fuse / overcome repulsion or potential energy.		1 × AO3 1 × AO4
	one discussed and two others covered r partially. Whilst there will be gaps, there t should only be an occasional error	Fission is initiated when nucleus absorbs a (thermal) neutron and (becomes unstable). Accept reference to spontaneous fission. Confinement to parts of diagram				
	3	One area discussed and one discussed partially, or all three covered partially. There are likely to be several errors and omissions in the discussion.		 Fusion BE (per nucleon) increases. (Large change in BE per nucleon in fusion.) 		
	2	Only one area discussed, or makes a partial attempt at two areas.		 Occurs on LHS with possible reference to 56. Fission Increase in BE per nucleon. 		
	1	None of the three areas covered without significant error.		(Large release of energy because (although change in BE per nucleon is smaller) there are a lot of nucleons		
	0	No relevant analysis.		involved.) Occurs on RHS with possible reference to 56		

Question	Answers	Additional comments/Guidelines	Mark	AO
03.2	Strong magnetic fields are required (to confine plasma) \checkmark		3	1 × AO1
	Idea that if electromagnets were not superconducting, the power dissipated in the magnets would be very great, (leading to damage or too much energy cost for reactor to be a net provider of power.) \checkmark			2 × AO2
	Particles constrained to move at high speed in circular			
	paths (reference to $BQv = m \frac{v^2}{r}$) so very strong magnetic			
	fields needed.			
	OR			
	Idea that the plasma is too hot for physical confinement / would cool the plasma on contact with the container \checkmark	Allow (plasma) looses energy for cools down		

Total	9
-------	---

Question	Answers	Additional comments/Guidelines	Mark	AO
04.1	Extracts a correct pair of values for p and V from Figure 4 .	Expect $(1.5, 2.45)$ and $(0.70 - 0.75, 5.0)$ Condone omission of or errors in powers of ten in mp1 and mp2.	3	1 × AO1 1 × AO2
	Calculates two values of pV correctly for their data. \checkmark	Expect to see a product of $35 - 37.5$ (J) no unit penalty.		1 × AO3
	Explains that pV is only constant if temperature is constant (with reference to $pV = nRT$ or $pV = NkT$) \checkmark	Accept checking that, if one halves, the other doubles. MP3 still required as separate statement.		
		Accept any correct alternative comparison.		

Question	Answers	Additional comments/Guidelines	Mark	AO
04.2	Attempts to find the area under the graph. \checkmark		3	1 × AO1
	Counts 20–22 squares OR calculates that one square is			1 × AO2
	equivalent to 1.25 (J) ✓			1 × AO3
	Adds in 14 squares or 17.5 J from below the graph (due to the false origin) to give 43 to 45 J \checkmark			
	OR			
	use of integration \checkmark			
	substitution limits \checkmark			
	answer in range 43 to 45J ✓			

MARK SCHEME - INTERNATIONAL A-LEVEL PHYSICS - PH04 - JANUARY 2025

Question	Answers	Additional comments/Guidelines	Mark	AO
04.3	Idea that work is done on the gas / $W > 0$ so either: energy must be transferred to the surroundings / $Q < 0$ (because $\Delta U = 0$) or the internal energy must increase / $\Delta U > 0$ (because $Q = 0$). \checkmark		2	1 × AO1 1 × AO2
	 Any one from: ✓ ΔU = Q + W with terms defined Idea that heat cannot be transferred to the surroundings unless there is a temperature difference. Or Idea that an increase in internal energy is an increase in temperature 			

Question	Answers	Additional comments/Guidelines	Mark	AO
04.4	Compression performed slowly (to give time for heat transfer). ✓ Material of the cylinder should be a good thermal conductor and/or the cylinder should have thin walls (to permit heat transfer). ✓		2	1 × AO2 1 × AO4

MARK SCHEME – INTERNATIONAL A-LEVEL PHYSICS – PH04 – JANUARY 2025

Question	Answers	Additional comments/Guidelines	Mark	AO
04.5	Uses $pV = nRT \checkmark$	Condone missing powers of ten in MP1	2	AO3
	0.015 (mol) ✓	Accept rearrangement and incorrect data in mp1		

Question	Answers	Additional comments/Guidelines	Mark	AO
04.6	Uses $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \checkmark$	Condone missing powers of ten. Expect to see $(1.5, 4.0)$ and $(5.0, 0.74)$.	3	1 × AO1 1 × AO2
	Extracts both pairs of data correctly. \checkmark			1 × AO3
	Uses absolute temperature and subtracts to find the temperature change. \checkmark	Expect to see 190 (K) (186-195) mp3 – independent		
	OR Uses $pV = nRT \checkmark$ Uses $(5.0 \times 10^{-4}, 0.75 \times 10^5)$ together with candidate's value from 04.5 ecf \checkmark Uses absolute temperature and subtracts to find the temperature change. \checkmark	Allow use of $(1.5 \times 10^{-4}, 4.0 \times 10^{5})$ if other end was used in 04.5		

MARK SCHEME – INTERNATIONAL A-LEVEL PHYSICS – PH04 – JANUARY 2025

Question	Answers	Additional comments/Guidelines	Mark	AO
04.7	Plot a graph of $\ln p$ (y-axis) against $\ln V(x$ -axis) \checkmark	Allow use of log with any base.	2	1 × AO2
	b = pagative of the gradient	2 nd mark is dependent on the 1 st		1 × AO3
	$b =$ negative of the gradient. \checkmark	Alternative:		
		Plot a graph of $\ln V$ (y-axis) against $\ln p$ (x-axis)		
		$b = \frac{1}{-\text{gradient}}$		

Total			17
-------	--	--	----

Question	Answers	Additional comments/Guidelines	Mark	AO
05.1	Use of $T = Fr$ e.g. $F \times 0.2 = 4.5 \checkmark$	Expect to see $F = 22.5$ N Condone use of $F \times 0.4 = 4.5$	3	1 × AO1 2 × AO2
	Use of $F_s = k\Delta l$ \checkmark Use of both equations leading to 0.015 (m) \checkmark	Expect to see $F_s = 36.3$ N Accept other units if correct and stated.		

Question	Answers	Additional comments/Guidelines	Mark	AO
05.2	95 (W) ✓	condone 93.6 – 95.4	1	AO3

Question	Answers	Additional comments/Guidelines	Mark	AO
05.3	46 (J) ecf for incorrect read-off in 05.2 \checkmark	Look for 0.00518 (candidate's 05.2) ²	1	AO2

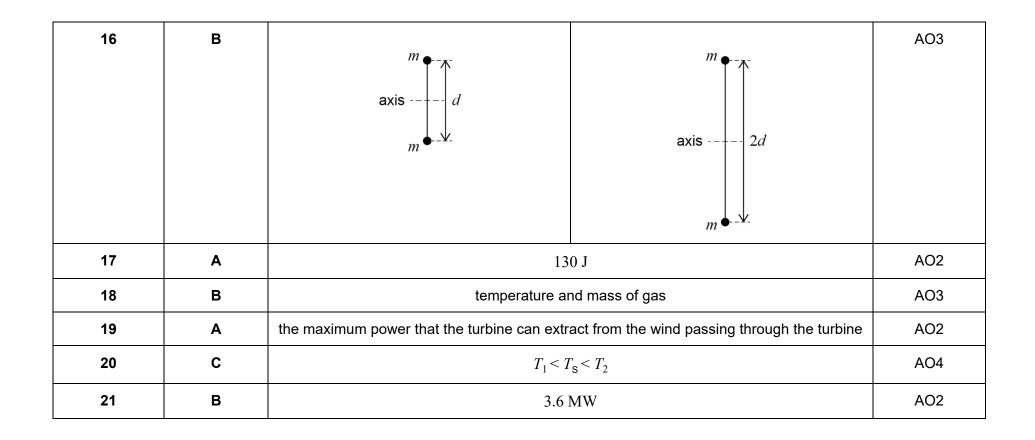
Question	Answers	Additional comments/Guidelines	Mark	AO
05.4	Determines α as $\frac{21 \text{ (rad s}^{-1})}{2.3 \text{ (s)}} \checkmark$ Use of resultant torque = I α +4.5 = 0.21 α +4.5 \checkmark Torque applied by rider = $\frac{280}{80}$ × candidate's resultant torque \checkmark 22.4 - 22.5 (N m) \checkmark	Expect 9.13 rad s ⁻² Expect 6.42 N Allow $\frac{140}{40}$ for $\frac{280}{80}$ Expect 3.5 × 6.42 Allow 22 or 23 (from correct rounding) Allow alternative route using forces.	4	1 × AO1 3 × AO2

Question Answers		Additional comments/Guidelines	Mark	AO
05.5	Idea that Torque is constant for 2.3 s \checkmark Idea that Torque is constant and has a smaller value after		2	1 × AO1 1 × AO2
	2.3 s 🗸			

Total		11

Question	Answers	Additional comments/Guidelines	Mark	AO
06.1	States that there must be 4 (parallel arms) of 30 cells in (series) ✓	Max 1 if no mention of series or parallel.	2	1 × AO1 1 × AO2
	calculates maximum terminal pd of 16.2 V OR the number of cells in each arm and then rounds up to integer values	Look for numerical justification		
	AND calculates a maximum current of 12.8 A OR the number of arms and then rounds up to integer values \checkmark			

Question	Answers	Additional comments/Guidelines	Mark	AO
06.2	Idea that 0.63 (V) is the emf of the cell / the pd with zero current. \checkmark Idea that 3.5 (A) is the current (through the internal resistance) when all of the emf is dropped across the internal resistance. \checkmark	Allow open circuit voltage / pd Allow short circuit current. Allow current when resistance / circuit or terminal pd is zero.	2	1 × AO2 1 × AO3


Question	Answers	Additional comments/Guidelines	Mark	AO
06.3	Uses $P = VI$ to find the power from one cell and gets 1.70–1.76 W \checkmark Multiplies by 60 to get 102 – 105 (W) \checkmark	Allow use of $P = IV$ for 1 branch = 20.7 - 21.1 W Condone 2sf	2	AO2

Question	Answers	Additional comments/Guidelines	Mark	AO
06.4	Uses series resistance formulae for 12 cells. OR	Expect 2.16	2	AO2
	Uses parallel resistance formulae for 5 arms. \checkmark Uses $r = 0.18$ (Ω) to give 0.43 (Ω) \checkmark	Allow anything that rounds to 0.43		

Question	Answers	Additional comments/Guidelines	Mark	AO
06.5	Uses $I = \frac{P}{4\pi r^2} \checkmark$ Together with EITHER	Candidates using $I_1r_1^2 = I_2r_2^2$ get MP1 and MP2.	2	AO2
	$I_{\text{surface}} = \frac{1350 \times 4\pi (1.5 \times 10^{11})^2}{4\pi (1.5 \times 10^{11} + 10^5)^2}$ leading to an answer indistinguishable from 1350 (W m ⁻²)	Allow any valid comparison.		
	OR			
	A justification based on the magnitude of the distance change compared with the number of sf of the data provided. ✓			

Total		10

Question	Кеу	Answer	AO
7	D	increases stays the same	AO1
8	С	$m^2 s^{-2}$	AO1
9	С	60 °C	AO3
10	B	PQ	AO3
11	D	$\frac{V_0}{273}$	AO3
12	D	e^c $\frac{1}{3}$	AO3
13	Α	$^{2}_{1}\text{H} + ^{3}_{1}\text{H} \rightarrow ^{4}_{2}\text{He} + n$	AO3
14	В	low nucleon number high specific heat capacity good neutron absorber	AO1
15	А	increasing the ratio $\frac{\text{number of uranium-}235 \text{ atoms}}{\text{number of uranium-}238 \text{ atoms}}$ for the sphere	AO2

