OXFORDAQA

INTERNATIONAL QUALIFICATIONS

ease write clearly in block capitals.	
entre number Candidate number	
irname	
prename(s)	
andidate signature I declare this is my own work.	_

INTERNATIONAL A-LEVEL PHYSICS

Unit 4 Energy and Energy resources

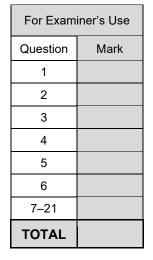
Friday 17 January 2025

07:00 GMT

Time allowed: 2 hours

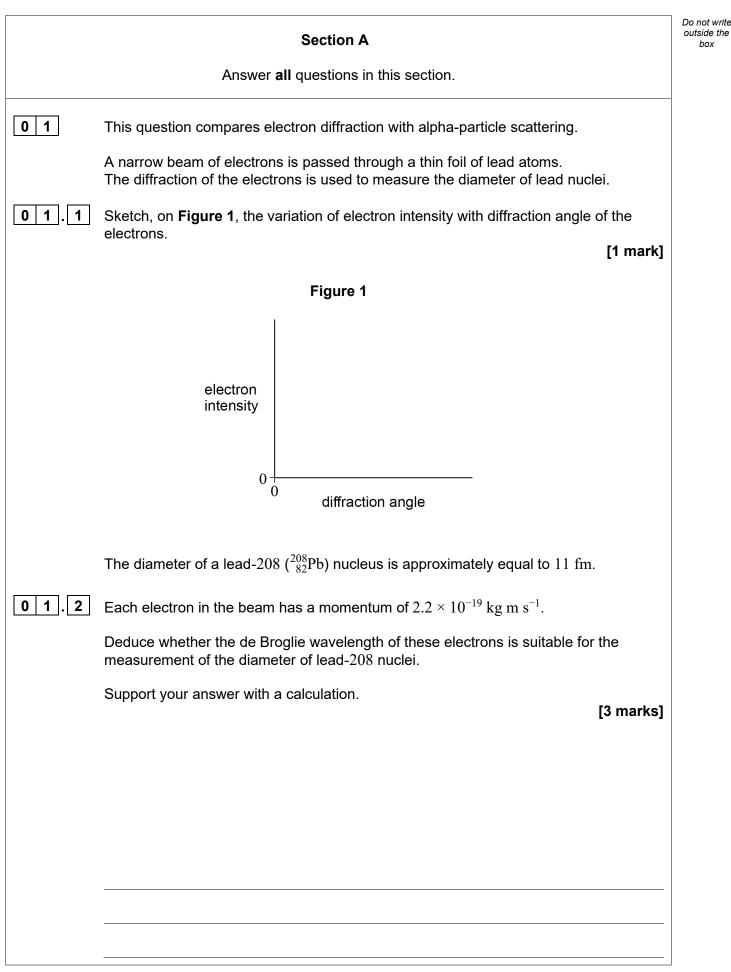
Materials

For this paper you must have:

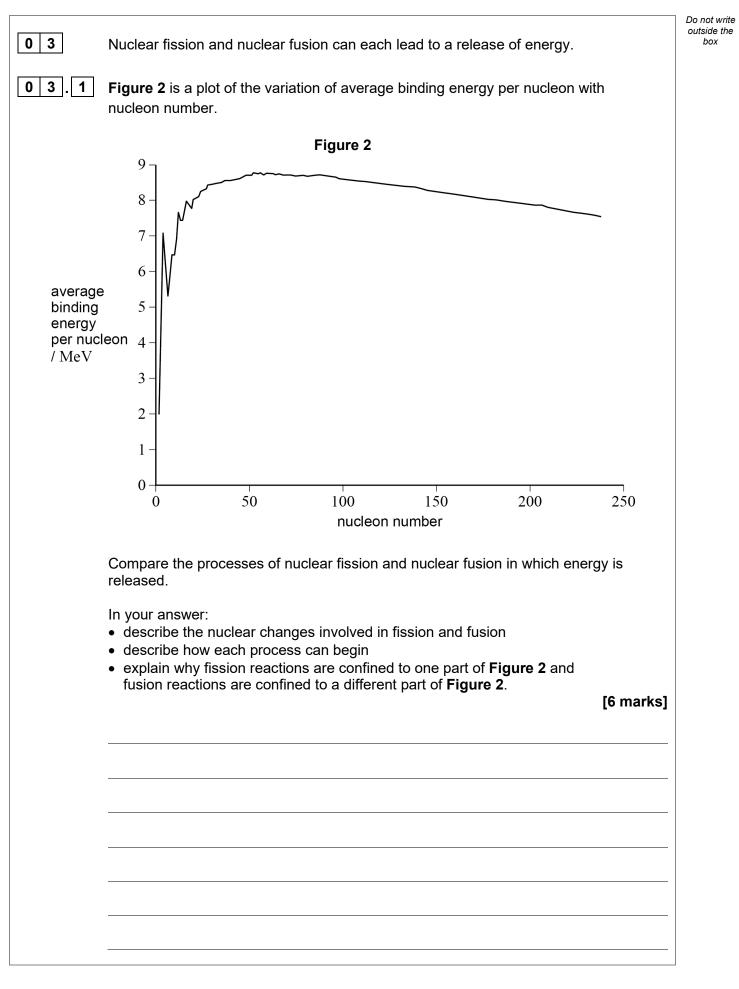

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

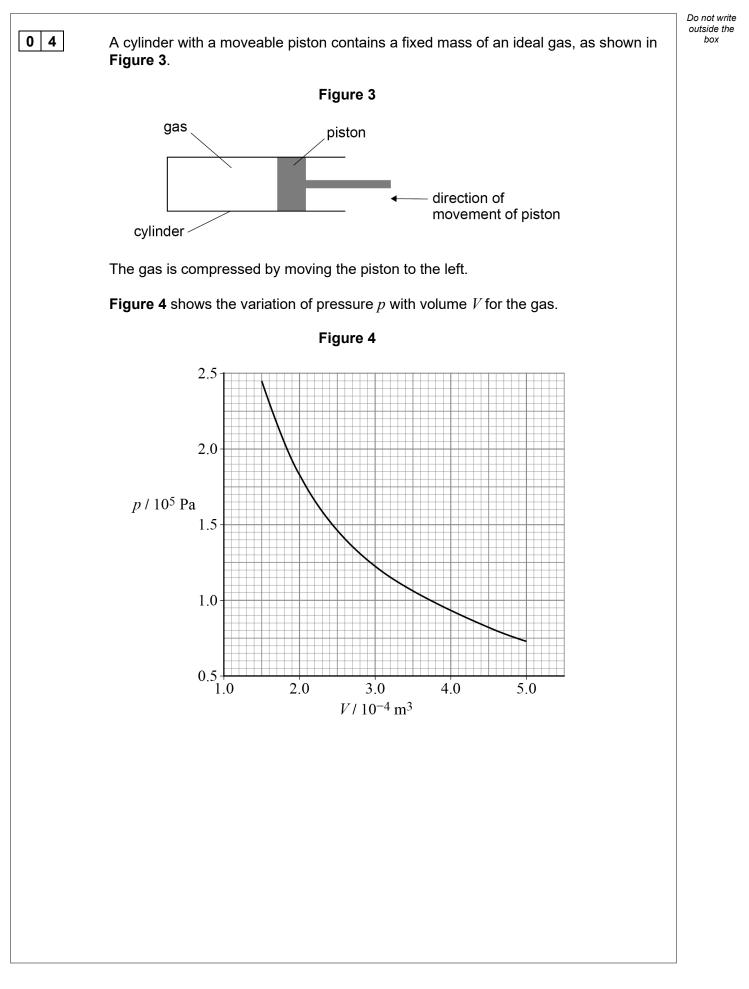

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.


	Lead-204 ($^{204}_{82}$ Pb) is another isotope of lead.	Do no outsi b
0 1.3	Electron diffraction is now used to measure the diameter of a lead-204 nucleus.	
	Deduce whether using electron diffraction to measure nuclear diameter will produce different answers for ${}^{204}_{82}$ Pb and ${}^{208}_{82}$ Pb nuclei.	
	[1 mark]	
0 1.4	An alpha particle with an initial kinetic energy of $8.4~{\rm MeV}$ is aimed directly at a nucleus of $^{208}_{82}{\rm Pb}$.	
	Assume that the ${}^{208}_{82}$ Pb nucleus remains stationary.	
	Calculate the distance of closest approach between the alpha particle and the nucleus.	
	[3 marks]	
	distance of closest approach = m	
0 1.5	The distance of closest approach is now determined with nuclei of $^{204}_{82}$ Pb using alpha particles with an initial kinetic energy of 8.4 MeV.	
	Deduce whether the distance of closest approach of the alpha particles will be	
	different for ${}^{204}_{82}$ Pb and ${}^{208}_{82}$ Pb nuclei.	
	[1 mark]	
		9

02.1	A sample of gas is in a sealed container.	Do not write outside the box
	Explain how the molecules of the gas exert pressure on the walls of the container. [4 marks]	
	Argon and xenon gases exist as single atoms that do not react. One container contains an equal number of argon and xenon atoms at constant temperature.	
	mass of 1.00 mol of $\operatorname{argon} = 0.040 \text{ kg}$ mass of 1.00 mol of xenon $= 0.132 \text{ kg}$	
02.2	Determine $\frac{C_{\text{Ar}}}{C_{\text{Xe}}}$	
	where c_{Ar} = root mean square speed (c_{rms}) of argon atoms c_{Xe} = root mean square speed (c_{rms}) of xenon atoms	
	[3 marks]	
	$\frac{c_{\rm Ar}}{c_{\rm Xe}} =$	

		Do not write outside the
02.3	The argon atoms and the xenon atoms all contribute to the total pressure exerted by the gas in the container.	box
	A student suggests that the xenon atoms make a greater contribution than the argon atoms to the total pressure.	
	Deduce whether the student is correct. [2 marks]	
		9
	Turn over for the next question	
	Turn over	 ►
0	5 IB/G/Jan25/PHC)4



0 3.2	Superconducting electromagnets are frequently used to contain the reactants in experimental fusion reactors.
	Explain why electromagnets are used in this application and why they need to be
	superconducting. [3 marks]

04.1	Show that, for the compression in Figure 4 , the temperature at the start of the compression is approximately the same as the temperature at the end of the compression.	Do not write outside the box
	[3 marks]	
	Determine the course determine the course in the course is a second second in F igure 4	
0 4 . 2	Determine the work done on the gas in the compression shown in Figure 4 . [3 marks]	
	work done =J	
04.3	A gas is initially at the same temperature as its surroundings. The temperature of the surroundings remains constant.	
	Explain why it is not possible to compress the gas so that its temperature remains exactly constant, while doing work on it.	
	Refer to the first law of thermodynamics in your answer. [2 marks]	
	[=	
	Question 4 continues on the next page	

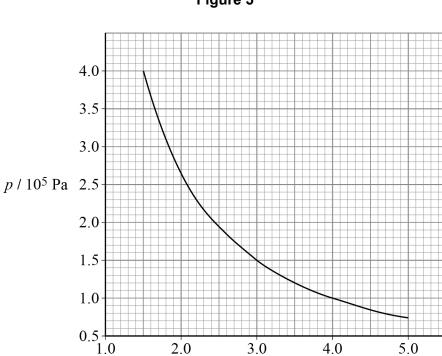
[2 marks]

Do not write outside the

box

Describe how the compression must be done.

In your answer you should consider:


- the way in which the piston is moved
- a feature of the cylinder.

approximately constant.

0 4 . 4

The gas in Figure 3 is now compressed in a different way so that its temperature changes significantly.

Figure 5 shows the variation of pressure p with volume V for the gas.

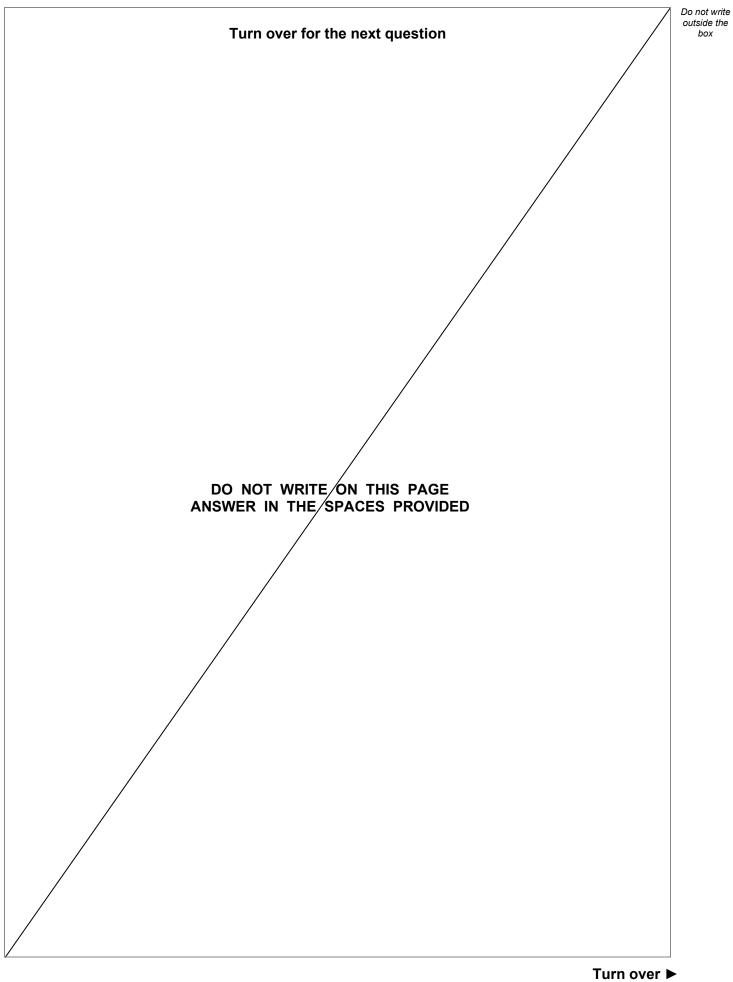
3.0

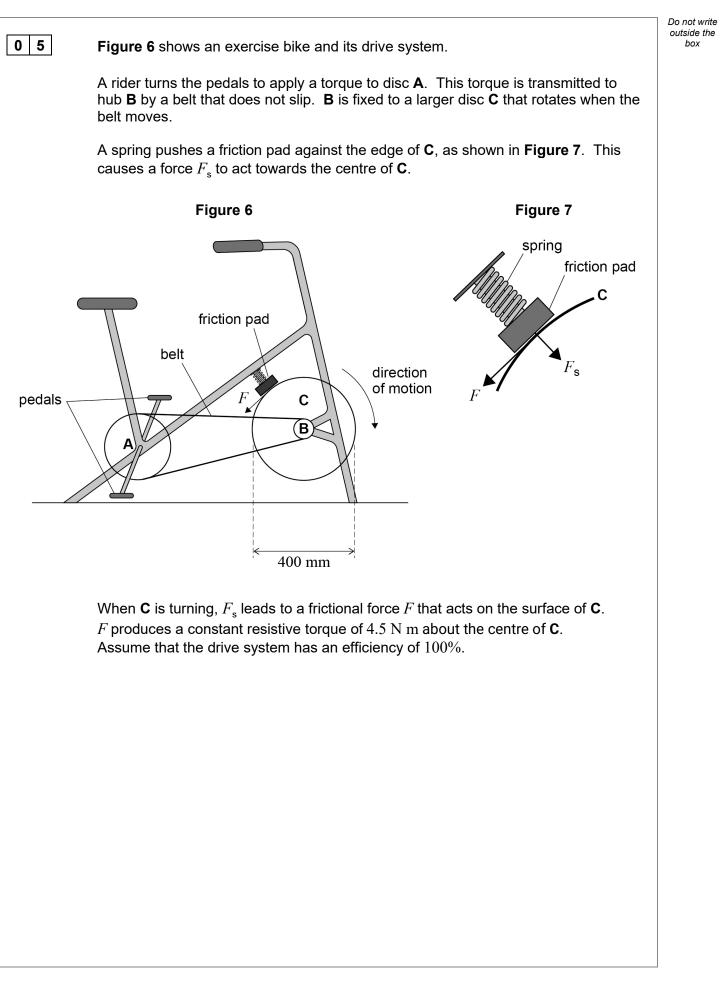
V / 10⁻⁴ m³

4.0

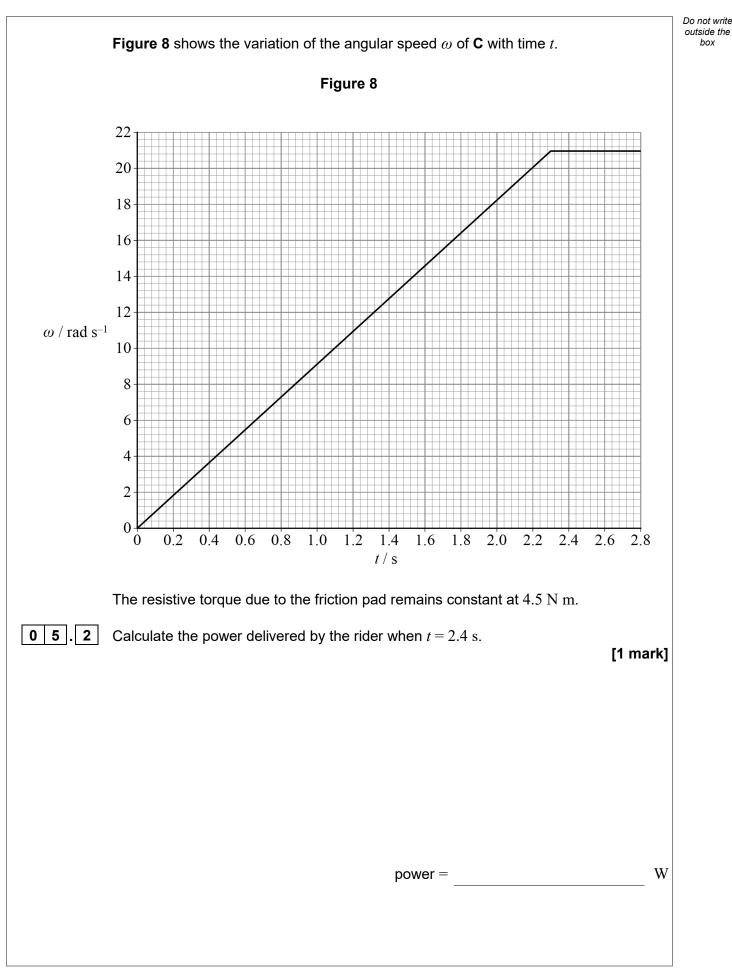
5.0

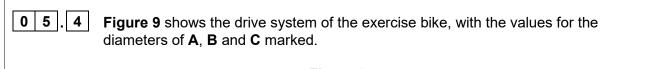
2.0

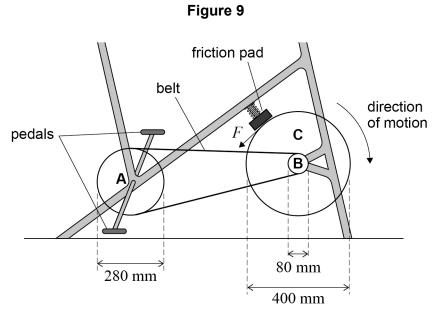

	The temperature of the gas immediately after the compression shown in Figure 5 is 223 $^{\circ}\mathrm{C}.$	Do not write outside the box
04.5	Calculate, in mol, the amount of gas in the cylinder. [2 marks]	
	amount of gas = mol	
04.6	Calculate the temperature change of the gas during the compression shown in Figure 5 .	
	[3 marks]	
	temperature change = K	
	Question 4 continues on the next page	


04.7	The values of p and V used to plot Figure 5 are connected by the relationship	outside ti box
	$pV^b = C$	
	where b and C are constants.	
	The values of p and V can also be processed to produce a linear graph from which b can be determined.	
	Suggest axes for this linear graph. Go on to explain how the value of <i>b</i> can be determined from this graph. [2 marks]	
		17

Do not write outside the box



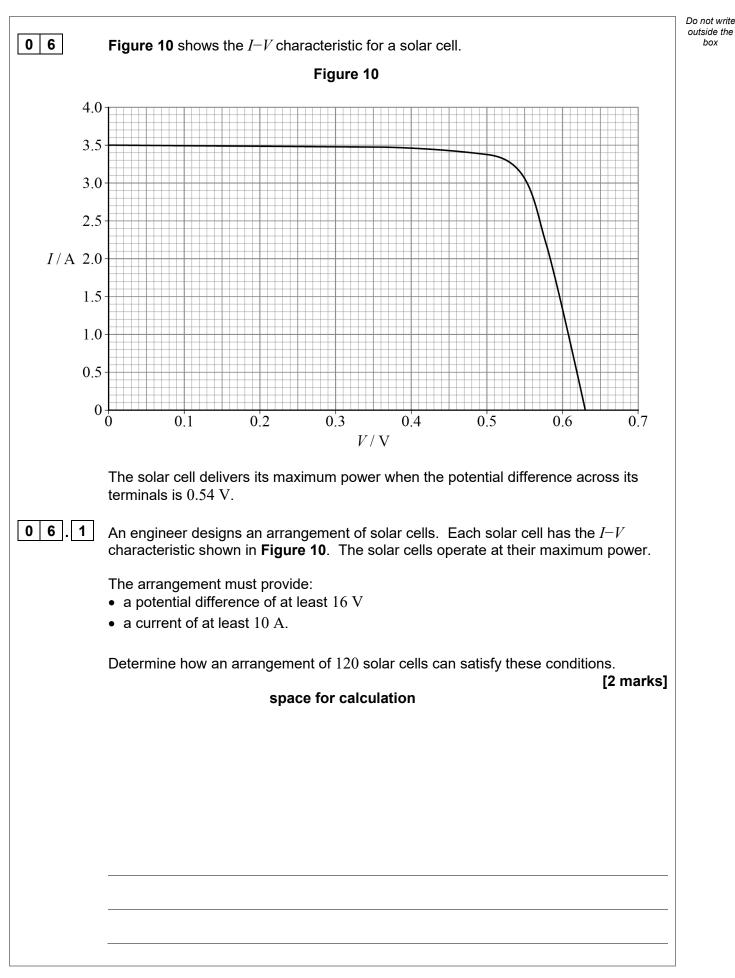

		Do not write
0 5.1	The magnitude of F is given by:	outside the box
	$F = 0.62F_{s}$	
	where $F_{\rm s}$ is the force in the compressed spring.	
	The spring constant of the spring is 2400 N m^{-1} . C has a diameter of 400 mm .	
	Calculate, in ${\rm m}$, the change in length of the spring. [3 marks]	
	change in length = m	
	Question 5 continues on the next page	
	Turn over D	•

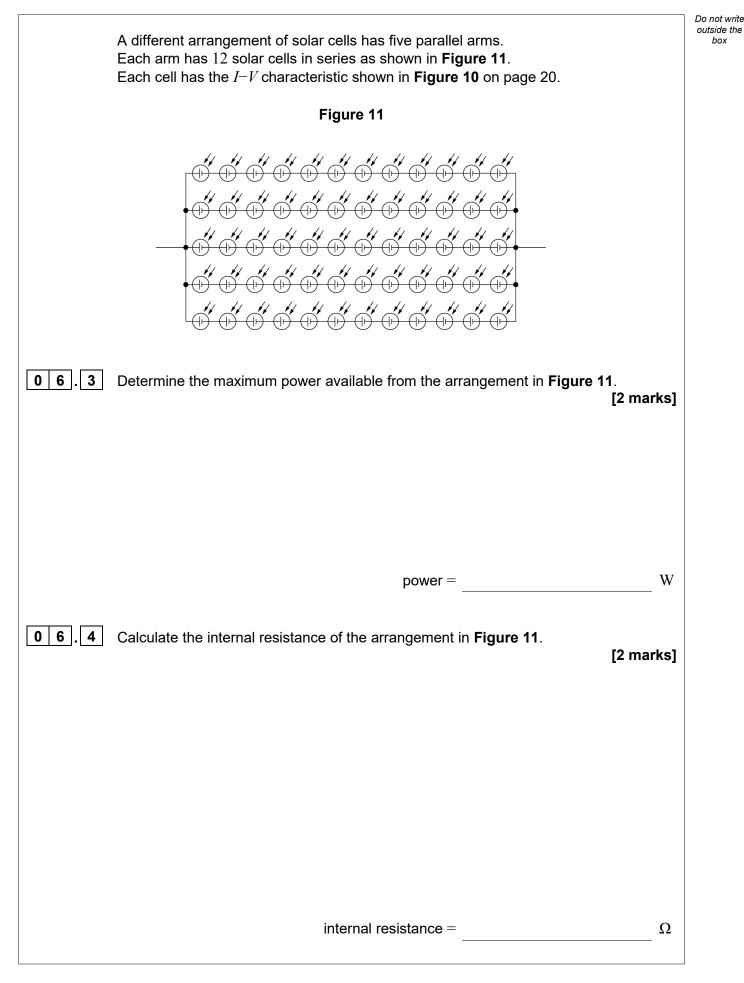


Determine the torque exerted by the belt on **A** during the first 2.3 s of **Figure 8** on page 16.

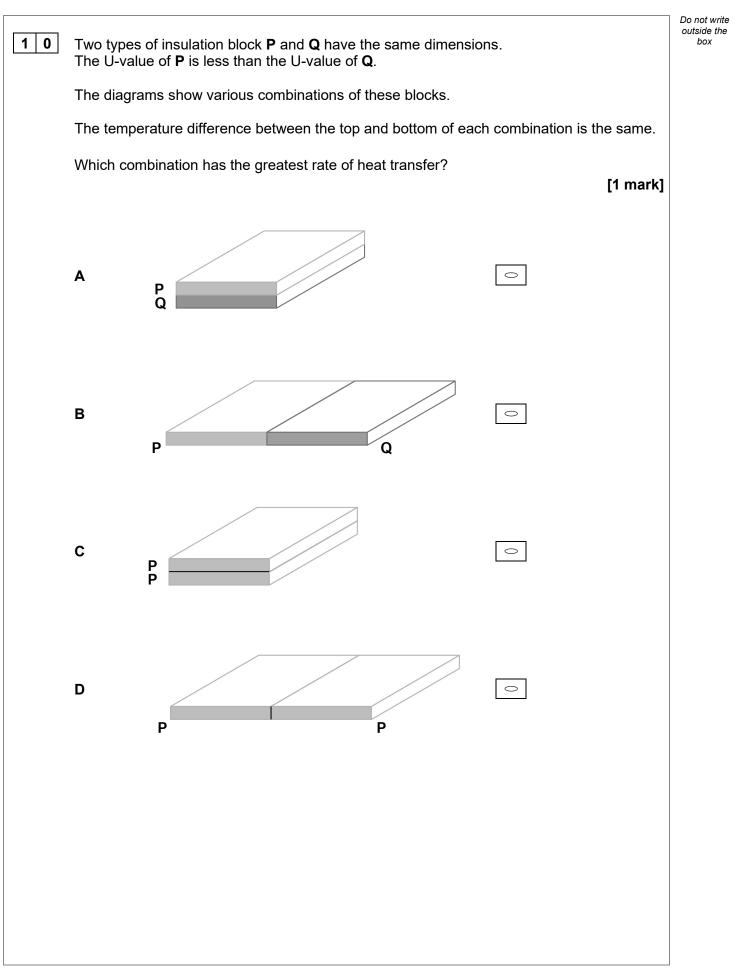
[4 marks]

Do not write outside the

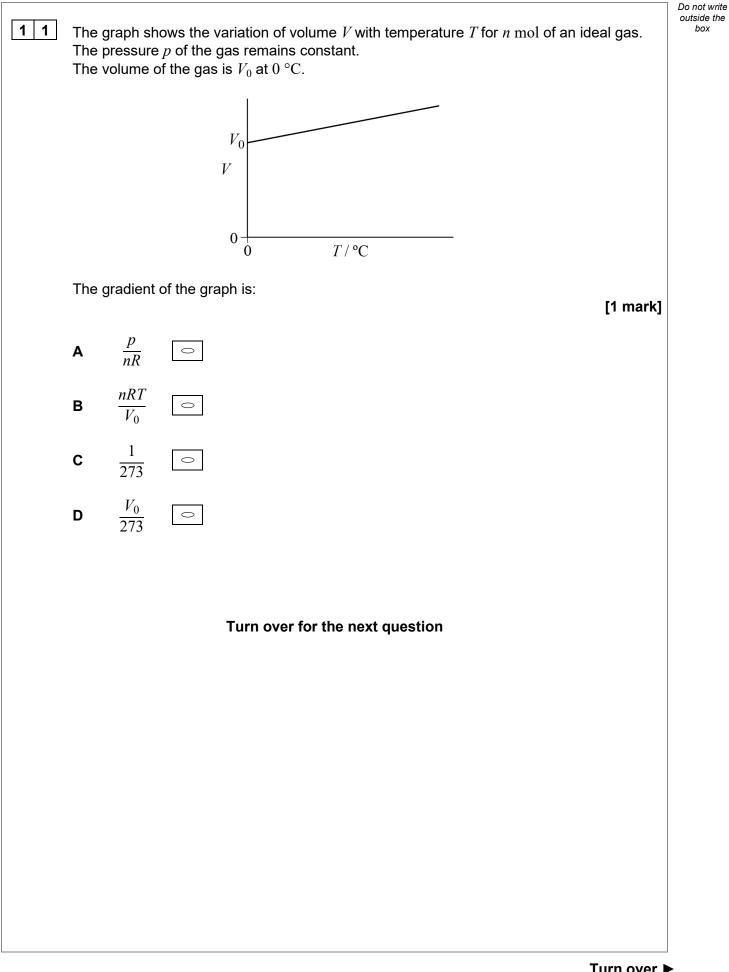

box



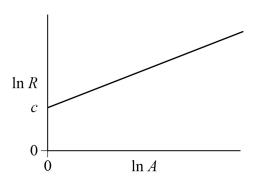
		Do
6 .2 T	The internal resistance r of each solar cell is given by:	out
	$r = \frac{0.63 \text{ V}}{3.5 \text{ A}}$	
_		
E	Explain why it is appropriate to use 0.63 V and 3.5 A to calculate <i>r</i> . [2 marks]	
0	0.63 V	
_		
_		
3	9.5 A	
_		
_		
	Question 6 continues on the next page	


06.5	Solar radiation is incident normal to the top of the Earth's atmosphere with an intensity of $1350\ W\ m^{-2}.$	outside the box
	The intensity of this solar radiation incident normal to the ground at the Earth's equator at midday is $1100~W~m^{-2}.$	
	Show that this reduction in intensity is not consistent with an inverse-square law.	
	radius of the Earth's orbit = 1.50×10^{11} m thickness of the Earth's atmosphere = 100 km	
	[2 marks]	
		[]
		10
	END OF SECTION A	
1	Turn over D	•

		Section B		
Each of the questions in this section is followed by four responses, A , B , C and D .				
	For each o	question select the besi	response.	
	swer per question is allo estion, completely fill in t		appropriate answer.	
RECT METHO		iethods 🗴 🖲	5	
ou want to	change your answer yo	ou must cross out your	original answer as shown. 🔀	
ou wish to shown. 🏹	return to an answer pre	eviously crossed out, rir	ng the answer you now wish to select	
K	\rightarrow	k snace around each a	lestion but this will not be marked	
	You may do your working in the blank space around each question but this will not be marked.			
	id material is melted at o			
The I	id material is melted at o mean potential energy o mean kinetic energy of t	of the molecules in the r	naterial is $E_{\rm p}$.	
The I The I	mean potential energy o	of the molecules in the r the molecules in the ma	naterial is $E_{\rm p}$. terial is $E_{\rm k}$. ess?	
The I The I	mean potential energy o mean kinetic energy of t	of the molecules in the r the molecules in the ma	naterial is $E_{\rm p}$. terial is $E_{\rm k}$.	
The I The I	mean potential energy o mean kinetic energy of t	of the molecules in the r the molecules in the ma	naterial is $E_{\rm p}$. terial is $E_{\rm k}$. ess?	
The I The I	mean potential energy o mean kinetic energy of t t happens to $E_{\rm p}$ and $E_{\rm k}$ o	of the molecules in the r the molecules in the ma during the melting proce	naterial is $E_{\rm p}$. terial is $E_{\rm k}$. ess?	
The r The r What	mean potential energy o mean kinetic energy of t t happens to E_p and E_k o E_p	of the molecules in the r the molecules in the ma during the melting proce <i>E</i> _k	naterial is E_p . terial is E_k . ess? [1 mark]	
The r The r What	mean potential energy o mean kinetic energy of t t happens to E_p and E_k o E_p stays the same	of the molecules in the r the molecules in the ma during the melting proce <i>E</i> k increases	naterial is E_p . terial is E_k . ess? [1 mark]	



0 8	The SI fundamenta	l (base) unit of specific latent heat is: [1 ma	Do not write outside the box
	A $J kg^{-1}$	0	
	B kg m ² s ⁻²	0	
	C $m^2 s^{-2}$	\bigcirc	
	$\mathbf{D} \ \mathrm{N} \ \mathrm{m} \ \mathrm{kg}^{-1}$	0	
09	A bar is made from	two metal cylinders R and S , each with the same cross-sectional are	a.
		thermal conductivity k . thermal conductivity $3k$.	
		are maintained at temperatures of 0 °C and 100 °C. the junction between R and S is θ .	
	The rates of heat tra	ansfer through R and S are the same.	
		$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
	What is θ ?	[1 ma	rk]
	A 40 °C	0	
	B 50 °C	0	
	C 60 °C	0	
	D 67 °C	0	



Turn over ►

box

The radius of a hydrogen $(^{1}_{1}H)$ nucleus is R_{0} .

Which row shows R_0 and the gradient of the graph?

	R ₀	Gradient of graph	
A	С	$\frac{1}{3}$	0
в	e ^c	3	0
с	С	3	0
D	e ^c	$\frac{1}{3}$	0

2 8

[1 mark]

Do not write

1 3 The table gives the nuclear masses of some nuclides.

Nuclide	Nuclear mass / u
lH	1.00783
$^{2}_{1}$ H	2.01410
$^{3}_{1}H$	3.01605
³ ₂ He	3.01603
⁴ ₂ He	4.00260
⁷ ₃ Li	7.01600
n	1.00866

29

Which reaction is possible without a net input of energy?

A ${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + n$ B ${}^{2}_{1}H + {}^{7}_{3}Li \rightarrow 2 {}^{4}_{2}He$ C ${}^{4}_{2}He + {}^{2}_{1}H \rightarrow {}^{3}_{2}He + {}^{3}_{1}H$ D ${}^{1}_{1}H + {}^{1}_{1}H \rightarrow p + {}^{2}_{1}H$

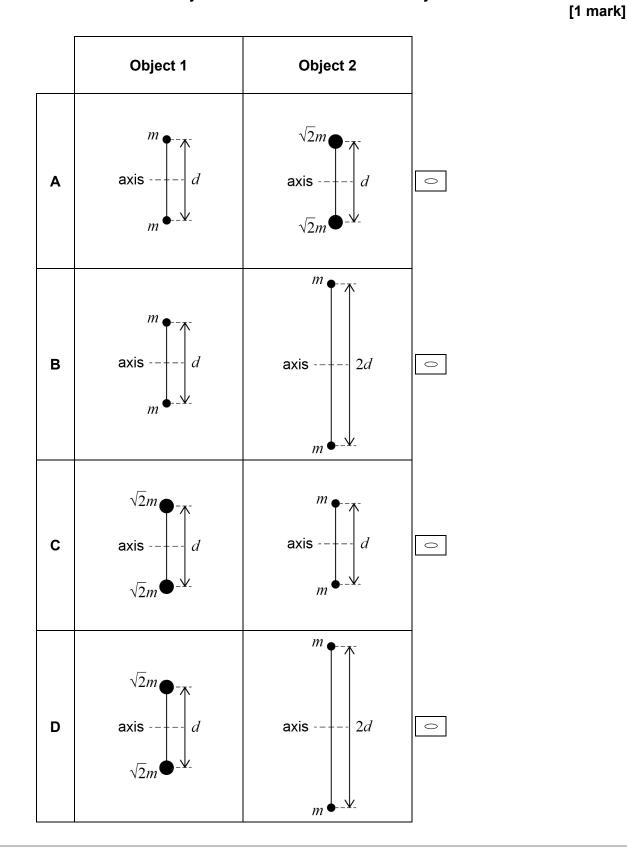
Turn over for the next question

Turn over ►

[1 mark]

Do not write outside the box

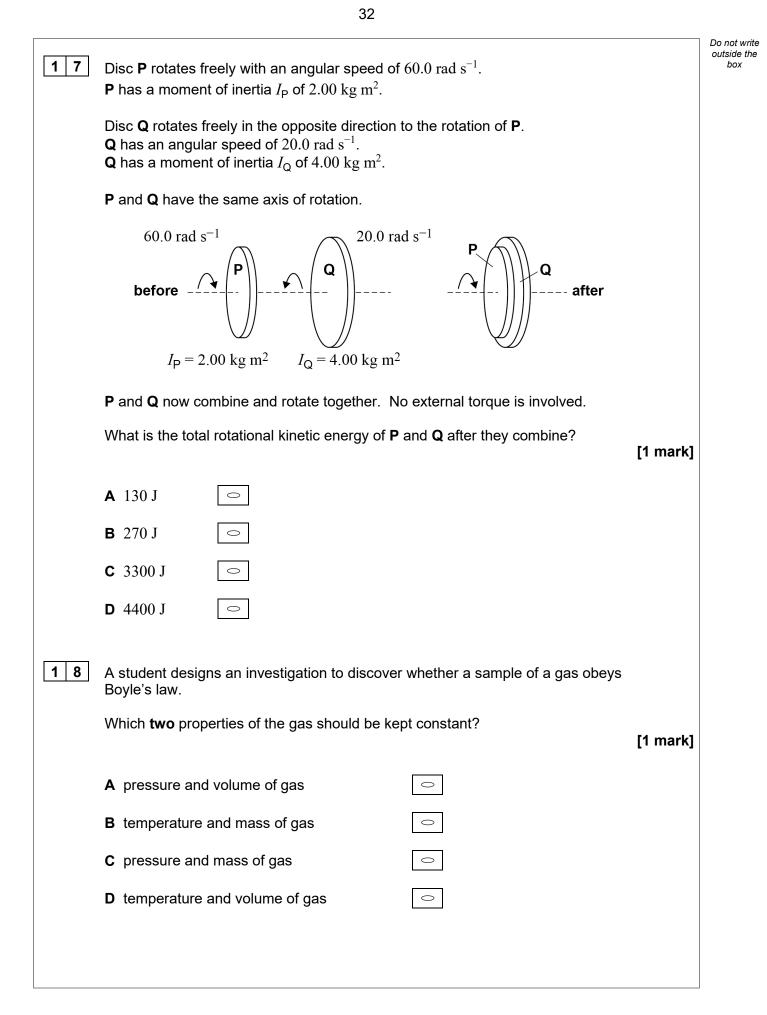
		Moderator	Coolant	Control rods	
	A	poor neutron absorber	low specific heat capacity	good neutron absorber	0
	в	low nucleon number	high specific heat capacity	good neutron absorber	0
	с	good neutron absorber	high specific heat capacity	high nucleon number	0
	D	low nucleon number	low specific heat capacity	high nucleon number	0
15	The u	d sphere of uranium conta iranium has a mass that is h change makes it possible creasing the ratio number o	less than the critical mass	s. to become critical? [1	s. mark]
	B si	urrounding the sphere with	a material that absorbs ne	eutrons	
	C cł	nanging the sphere into a c	cube of the same volume	0	
	D in	creasing the temperature of	of the sphere	0	



1 4

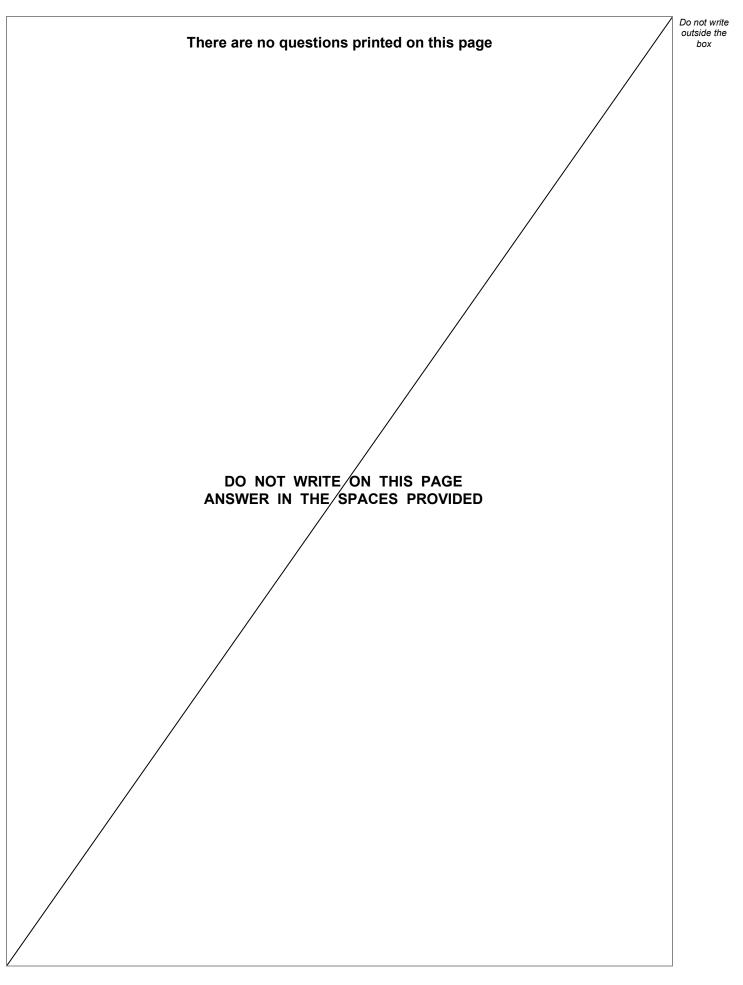
In the diagrams below, each object is a pair of point masses connected by a light rod. The axis of rotation is shown in each case.

In which row is:


moment of inertia of **Object 2** = $4 \times$ moment of inertia of **Object 1**?

Do not write outside the

box

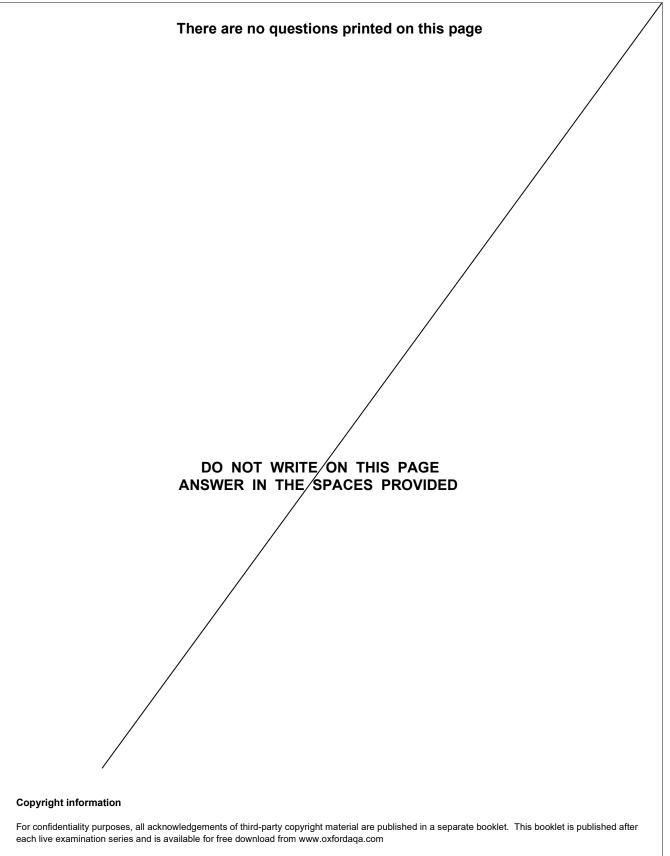


1 9	Which is not equivalent to $\frac{1}{2}\pi r^2 \rho v^3$ for a wind turbine?		Do not write outside the box
	$\frac{1}{2}m^{2}p^{2}$ for a wind turbine:	[1 mark]	
	A the maximum power that the turbine can extract from the wind passing through the turbine	0	
	B the maximum power of the wind passing through the turbine	0	
	C $\frac{p^2}{2m}$ where <i>m</i> is the mass and <i>p</i> is the momentum of the air passing through the turbine in one second	0	
	D the kinetic energy of the air arriving at the area swept by the turbine's blades in one second	0	
20	A student plans to determine the specific heat capacity c of a metal block by an electrical method.		
	She plans to heat the block and measure its temperature rise. The initial temperature of the block is T_1 . The final temperature of the block is T_2 . The constant temperature of the surroundings is T_s .		
	She wishes to reduce the effect of heat transfer between the block and the surrou on her value of c .	Indings	
	Which relationship between T_1 , T_2 and T_8 should she use?	[1 mark]	
	A $T_{\rm S} < T_1 < T_2$		
	B $T_1 < T_2 < T_s$		
	c $T_1 < T_s < T_2$ \Box		
	D $T_{\rm S} < T_2 < T_1$		
	Turn over for the next question		

e the x
7
-

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.

